Examinando por Autor "Saito, Roberto K."
Mostrando 1 - 8 de 8
Resultados por página
Opciones de ordenación
Ítem A machine learned classifier for RR Lyrae in the VVV survey(EDP Sciences, 2016-11) Elorrieta, Felipe; Eyheramendy, Susana; Jordán, Andrés; Dékány, István; Catelan, Márcio; Angeloni, Rodolfo; Alonso-García, Javier; Contreras-Ramos, Rodrigo; Gran, Felipe; Hajdu, Gergely; Espinoza, Néstor; Saito, Roberto K.; Minniti, DanteVariable stars of RR Lyrae type are a prime tool with which to obtain distances to old stellar populations in the Milky Way. One of the main aims of the Vista Variables in the Via Lactea (VVV) near-infrared survey is to use them to map the structure of the Galactic Bulge. Owing to the large number of expected sources, this requires an automated mechanism for selecting RR Lyrae, and particularly those of the more easily recognized type ab (i.e., fundamental-mode pulsators), from the 106−107 variables expected in the VVV survey area. In this work we describe a supervised machine-learned classifier constructed for assigning a score to a Ks-band VVV light curve that indicates its likelihood of being ab-type RR Lyrae. We describe the key steps in the construction of the classifier, which were the choice of features, training set, selection of aperture, and family of classifiers. We find that the AdaBoost family of classifiers give consistently the best performance for our problem, and obtain a classifier based on the AdaBoost algorithm that achieves a harmonic mean between false positives and false negatives of ≈7% for typical VVV light-curve sets. This performance is estimated using cross-validation and through the comparison to two independent datasets that were classified by human experts.Ítem Confirmation of a New Metal-poor Globular Cluster in the Galactic Bulge(Institute of Physics Publishing, 2018-10) Minniti, Dante; Schlafly E.F.; Palma, Tali; Clariá, Juan J.; Hempel, Maren; Alonso-García, Javier; Bica, Eduardo; Bonatto, Charles; Braga, Vittorio F.; Clementini, Gisella; Garofalo, Alessia; Gómez, Matías; Ivanov, Valentin D.; Lucas, Phillip W.; Pullen, Joyce; Saito, Roberto K.; Smith, Leigh C.We use deep near-IR photometry of the VISTA Variables in the V'a L'ctea (VVV) Survey and deep DECam Plane Survey (DECaPS) optical photometry to confirm the physical reality of the candidate globular cluster (GC) Minni 22, which is located in the Galactic bulge. This object, which was detected as a high density region in our maps of bulge red giants, is now confirmed as a real GC based on the optical and near-IR color'magnitude diagrams. We also recover three known fundamental mode (ab type) RR Lyrae stars within 2 arcmin of the cluster center. The presence of RR Lyrae stars also seems to confirm Minni 22 as a bonafide old and metal-poor GC. We estimate a cluster reddening E(J - Ks) = 0.6 mag and determine its heliocentric distance D = 7.4 ± 0.3 kpc. The optical and near-IR color'magnitude diagrams reveal well-defined red giant branches in all cases, including a red giant branch bump at Ks = 13.30 ± 0.05 mag. The comparison with theoretical isochrones yields a mean metallicity of [Fe/H] = -1.3 ± 0.3 dex, and age of t ∼ 11.2 Gyr. This is a good example of a new low-luminosity (MV = -6.2 mag) GC found in the central bulge of the Milky Way. After discussing the different ways to confirm the existence of bulge GC candidates, we find that one of the best methods is to use the CMDs from the combination of the DECaPS + VVV photometries. © 2018 The American Astronomical Society. All rights reserved.Ítem FSR 1716: A New Milky Way Globular Cluster Confirmed Using VVV RR Lyrae Stars(Institute of Physics Publishing, 2017-03) Minniti, Dante; Palma, Tali; Dékány, Istvan; Hempel, Maren; Rejkuba, Marina; Pullen, Joyce; Alonso-García, Javier; Barbá, Rodolfo; Barbuy, Beatriz; Bica, Eduardo; Bonatto, Charles; Borissova, Jura; Catelan, Marcio; Carballo-Bello, Julio A.; Chene, Andre Nicolas; Clariá, Juan José; Cohen, Roger E.; Contreras Ramos, Rodrigo; Dias, Bruno; Emerson, Jim; Froebrich, Dirk; Buckner, Anne S. M.; Geisler, Douglas; Gonzalez, Oscar A.; Gran, Felipe; Hagdu, Gergely; Irwin, Mike; Ivanov, Valentin D.; Kurtev, Radostin; Lucas, Philip W.; Majaess, Daniel; Mauro, Francesco; Moni-Bidin, Christian; Navarrete, Camila; Alegría, Sebastian Ramírez; Saito, Roberto K.; Valenti, Elena; Zoccali, ManuelaWe use deep multi-epoch near-IR images of the VISTA Variables in the Vía Láctea (VVV) Survey to search for RR Lyrae stars toward the Southern Galactic plane. Here, we report the discovery of a group of RR Lyrae stars close together in VVV tile d025. Inspection of the VVV images and PSF photometry reveals that most of these stars are likely to belong to a globular cluster that matches the position of the previously known star cluster FSR 1716. The stellar density map of the field yields a >100σ detection for this candidate globular cluster that is centered at equatorial coordinates R.A.J2000 = 16:10:30.0, decl.J2000 = -53:44:56 and galactic coordinates l = 329.77812, b = -1.59227. The color-magnitude diagram of this object reveals a well-populated red giant branch, with a prominent red clump at K s = 13.35 ±0.05, and J - K s = 1.30 ±0.05. We present the cluster RR Lyrae positions, magnitudes, colors, periods, and amplitudes. The presence of RR Lyrae indicates an old globular cluster, with an age >10 Gyr. We classify this object as an Oosterhoff type I globular cluster, based on the mean period of its RR Lyrae type ab, days, and argue that this is a relatively metal-poor cluster with [Fe/H] = -1.5 ±0.4 dex. The mean extinction and reddening for this cluster are and E(J - K s) = 0.72 ±0.02 mag, respectively, as measured from the RR Lyrae colors and the near-IR color-magnitude diagram. We also measure the cluster distance using the RR Lyrae type ab stars. The cluster mean distance modulus is (m - M)0 = 14.38 ±0.03 mag, implying a distance D = 7.5 ±0.2 kpc and a Galactocentric distance R G = 4.3 kpc. © 2017. The American Astronomical Society. All rights reserved.Ítem Interstellar extinction curve variations towards the inner Milky Way: A challenge to observational cosmology(Oxford University Press, 2016-03) Nataf, David M.; Gonzalez, Oscar A.; Casagrande, Luca; Zasowski, Gail; Wegg, Christopher; Wolf, Christian; Kunder, Andrea; Alonso-Garcia, Javier; Minniti, Dante; Rejkuba, Marina; Saito, Roberto K.; Valenti, Elena; Zoccali, Manuela; Poleski, Radosław; Pietrzyński, Grzegorz; Skowron, Jan; Soszyński, Igor; Szymański, Michał K.; Udalski, Andrzej; Ulaczyk, Krzyszto; Wyrzykowski, ŁukaszWe investigate interstellar extinction curve variations towards ∼4 deg2 of the inner Milky Way in VIJKs photometry from the OGLE-III (third phase of the Optical Gravitational Lensing Experiment) and VVV (VISTA Variables in the Via Lactea) surveys, with supporting evidence from diffuse interstellar bands and F435W, F625W photometry. We obtain independent mea surements towards ∼2000 sightlines of AI, E(V − I), E(I − J) and E(J − Ks), with median precision and accuracy of 2 per cent. We find that the variations in the extinction ratios AI/E(V − I), E(I − J)/E(V − I) and E(J − Ks)/E(V − I) are large (exceeding 20 per cent), signifi cant and positively correlated, as expected. However, both the mean values and the trends in these extinction ratios are drastically shifted from the predictions of Cardelli and Fitzpatrick, regardless of how RV is varied. Furthermore, we demonstrate that variations in the shape of the extinction curve have at least two degrees of freedom, and not one (e.g. RV), which we confirm with a principal component analysis. We derive a median value of AV/AKs = 13.44, which is ∼60 per cent higher than the ‘standard’ value. We show that the Wesenheit magnitude WI = I − 1.61(I − J) is relatively impervious to extinction curve variations. Given that these extinction curves are linchpins of observational cosmology, and that it is generally assumed that RV variations correctly capture variations in the extinction curve, we argue that systematic errors in the distance ladder from studies of Type Ia supernovae and Cepheids may have been underestimated. Moreover, the reddening maps from the Planck experiment are shown to systematically overestimate dust extinction by ∼100 per cent and lack sensitivity to extinction curve variations.Ítem M dwarf stars in the b294 field from the VISTA Variables in the Vía Láctea (VVV)(Oxford University Press, 2023-04) Cruz, Patricia; Cortés-Contreras, Miriam; Solano, Enrique; Rodrigo, Carlos; Minniti, Dante; Alonso-García, Javier; Saito, Roberto K.M dwarf stars are the dominant stellar population in the Milky Way, and they are important for a wide variety of astrophysical topics. The Gaia mission has delivered a superb collection of data, nevertheless, ground-based photometric surveys are still needed to study faint objects. Therefore, the present work aims to identify and characterize M dwarf stars in the direction of the Galactic bulge using photometric data and with the help of Virtual Observatory tools. Using parallax measurements and proper motions from Gaia Data Release 3, in addition to different colour-cuts based on VISTA filters, we identify and characterize 7 925 M dwarf stars in the b294 field from the Vista Variables in the Vía Láctea (VVV) survey. We performed a spectral energy distribution fitting to obtain the effective temperature for all objects using photometric information available at Virtual Observatory archives. The objects in our sample have temperatures varying from 2800–3900 K. We also search for periodic signals in VVV light curves with up to 300 epochs, approximately. As a secondary outcome, we obtain periods for 82 M dwarfs by applying two methods: the Lomb–Scargle and Phase Dispersion Minimization methods, independently. These objects, with periods ranging from 0.14–34 d, are good candidates for future ground-based follow up. Our sample has increased significantly the number of known M dwarfs in the direction of the Galactic bulge and within 500 pc, showing the importance of ground-based photometric surveys in the near-infrared. © 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Ítem M dwarfs in the b201 tile of the VVV survey: Colour-based selection, spectral types and light curves(EDP Sciences, 2014-11) Rojas-Ayala, Bárbara; Iglesias, Daniela; Minniti, Dante; Saito, Roberto K.; Surot, FranciscoContext. The intrinsically faint M dwarfs are the most numerous stars in the Galaxy, have main-sequence lifetimes longer than the Hubble time, and host some of the most interesting planetary systems known to date. Their identification and classification throughout the Galaxy is crucial to unraveling the processes involved in the formation of planets, stars, and the Milky Way. The ESO Public Survey VVV is a deep near-IR survey mapping the Galactic bulge and southern plane. The VVV b201 tile, located in the border area of the bulge, was specifically selected for the characterisation of M dwarfs. Aims. We used VISTA photometry to identify M dwarfs in the VVV b201 tile, to estimate their subtypes, and to search for transit-like light curves from the first 26 epochs of the survey. Methods. UKIDSS photometry from SDSS spectroscopically identified M dwarfs was used to calculate their expected colours in the YJHKs VISTA system. A colour-based spectral subtype calibration was computed. Possible giants were identified by a (J-Ks,HJ) reduced proper motion diagram. The light curves of 12.8Ítem The structure behind the Galactic bar traced by red clump stars in the VVV survey(Oxford University Press, 2018-11) Gonzalez, Oscar A.; Minniti, Dante; Valenti, Elena; Alonso-García, Javier; Debattista, Victor P.; Zoccali, Manuela; Rejkuba, Marina; Dias, Bruno; Surot, Francisco; Hempel, Maren; Saito, Roberto K.Red clump stars are commonly used to map the reddening and morphology of the inner regions of the Milky Way. We use the new photometric catalogues of the VISTA Variables in the Vía Láctea survey to achieve twice the spatial resolution of previous reddening maps for Galactic longitudes - 10° < l < 10° and latitudes -1.5° < b < 1.5°. We use these dereddened catalogues to construct the Ks luminosity function around the red clump in the Galactic plane. We show that the secondary peak (fainter than the red clump) detected in these regions does not correspond to the bulge red-giant branch bump alone, as previously interpreted. Instead, this fainter clump corresponds largely to the over-density of red clump stars tracing the spiral arm structure behind the Galactic bar. This result suggests that studies aiming to characterize the bulge red-giant branch bump should avoid low galactic latitudes (|b| < 2°), where the background red clump population contributes significant contamination. It furthermore highlights the need to include this structural component in future modelling of the Galactic bar. © 2018 The Author(s).Ítem VVV-WIT-12 and Its Fashionable Nebula: A 4 yr Long-period Young Stellar Object with a Light Echo?(American Astronomical Society, 2023-11-01) Saito, Roberto K.; Stecklum, Bringfried; Minniti, Dante; Lucas, Philip W.; Guo, Zhen; Smith, Leigh C.; Fraga, Luciano; Navarete, Felipe; Beamín, Juan Carlos; Morris, CalumWe report the serendipitous discovery of VVV-WIT-12, an unusual variable source that seems to induce variability in its surrounding nebula. The source belongs to the rare objects that we call WITs (short for What Is This?) discovered within the VISTA Variables in the Vía Láctea (VVV) survey. VVV-WIT-12 was discovered during a pilot search for light echoes from distant supernovae in the Milky Way using the near-IR images of the VVV survey. This source has an extremely red spectral energy distribution, consistent with a very reddened (A V ∼ 100 mag) long-period variable star (P ∼ 1525 days). Furthermore, it is enshrouded in a nebula that changes brightness and color with time, apparently in sync with the central source variations. The near-IR light curve and complementary follow-up spectroscopy observations are consistent with a variable young stellar object illuminating its surrounding nebula. In this case the source periodic variation along the cycles produces an unprecedented light echo in the different regions of the nebula.