Examinando por Autor "Sarker, Mahfuzur R."
Mostrando 1 - 6 de 6
Resultados por página
Opciones de ordenación
Ítem Characterization of germinants and their receptors for spores of non-food-borne Clostridium perfringens strain F4969(Microbiology Society, 2016-11) Banawas, Saeed; Paredes-Sabja, Daniel; Setlow, Peter; Sarker, Mahfuzur R.Clostridium perfringens type A can cause both food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases. Our previous study reported that a mixture of l-asparagine and KCl (AK)-germinated spores of FP and NFB isolates well, but KCl and, to a lesser extent, l-asparagine induced spore germination only in FP isolates. We now report that the germination response of FP and NFB spores differsignificantly in several defined germinants and rich media. Spores of NFB strain F4969 gerAA, gerKA-KC or gerKC mutants lacking specific germinant receptor proteins germinated more slowly than wild-type spores with rich media, did not germinate with AK and germinated poorly compared to wild-type spores with l-cysteine. The germination defects in the gerKA-KC spores were largely due to loss of GerKC as (i) gerKA spores germinated significantly with all tested germinants, while gerKC spores exhibited poor or no germination; and (ii) germination defects in gerKC spores were largely restored by expressing the wild-type gerKA-KC operon in trans. We also found that gerKA-KC, gerAA and gerKC spores, but not gerKA spores, released dipicolinic acid at a slower rate than wild-type spores with AK. The colony-forming efficiency of F4969 gerKC spores was also ~35-fold lower than that of wild-type spores, while gerAA and wild-type spores had similar viability. Collectively, these results suggest that the GerAA and GerKC proteins play roles in normal germination of C. perfringens NFB isolates and that GerKC, but not GerAA, is important in these spores' apparent viability.Ítem Characterization of the Adherence of Clostridium difficile Spores: The Integrity of the Outermost Layer Affects Adherence Properties of Spores of the Epidemic Strain R20291 to Components of the Intestinal Mucosa(FRONTIERS MEDIA SA, 2016-09) Mora-Uribe, Paola; Miranda-Cárdenas, Camila; Castro-Córdova, Pablo; Gil, Fernando; Calderón, Iván; Fuentes, Juan A.; Rodas, Paula I.; Banawas, Saeed; Sarker, Mahfuzur R.; Paredes-Sabja, DanielClostridium difficile is the causative agent of the most frequently reported nosocomial diarrhea worldwide. The high incidence of recurrent infection is the main clinical challenge of C. difficile infections (CBI). Formation of C. difficile spores of the epidemic strain R20291 has been shown to be essential for recurrent infection and transmission of the disease in a mouse model. However, the underlying mechanisms of how these spores persist in the colonic environment remains unclear. In this work, we characterized the adherence properties of epidemic R20291 spores to components of the intestinal mucosa, and we assessed the role of the exosporium integrity in the adherence properties by using cdeC mutant spores with a defective exosporium layer. Our results showed that spores and vegetative cells of the epidemic R20291 strain adhered at high levels to monolayers of Caco-2 cells and mucin. Transmission electron micrographs of Caco-2 cells demonstrated that the hair-like projections on the surface of R20291 spores are in close proximity with the plasma membrane and microvilli of undifferentiated and differentiated monolayers of Caco-2 cells. Competitive-binding assay in differentiated Caco-2 cells suggests that spore-adherence is mediated by specific binding sites. By using spores of a cdeC mutant we demonstrated that the integrity of the exosporium layer determines the affinity of adherence of C. difficile spores to Caco-2 cells and mucin. Binding of fibronectin and vitronectin to the spore surface was concentration-dependent, and depending on the concentration, spore-adherence to Caco-2 cells was enhanced. In the presence of an aberrantly-assembled exosporium (cdeC spores), binding of fibronectin, but not vitronectin, was increased. Notably, independent of the exosporium integrity, only a fraction of the spores had fibronectin and vitronectin molecules binding to their surface. Collectively, these results demonstrate that the integrity of the exosporium layer of strain R20291 contributes to selective spore adherence to components of the intestinal mucosa.Ítem Clostridium perfringens sporulation and sporulation-associated toxin production(American Society for Microbiology, 2016) Li, Jihong; Paredes-Sabja, Daniel; Sarker, Mahfuzur R.; Mcclane, Bruce A.The ability of Clostridium perfringens to form spores plays a key role during the transmission of this Gram-positive bacterium to cause disease. Of particular note, the spores produced by food poisoning strains are often exceptionally resistant to food environment stresses such as heat, cold, and preservatives, which likely facilitates their survival in temperature-abused foods. The exceptional resistance properties of spores made by most type A food poisoning strains and some type C foodborne disease strains involve their production of a variant small acid-soluble protein-4 that binds more tightly to spore DNA than to the small acid-soluble protein-4 made by most other C. perfringens strains. Sporulation and germination by C. perfringens and Bacillus spp. share both similarities and differences. Finally, sporulation is essential for production of C. perfringens enterotoxin, which is responsible for the symptoms of C. perfringens type A food poisoning, the second most common bacterial foodborne disease in the United States. During this foodborne disease, C. perfringens is ingested with food and then, by using sporulation-specific alternate sigma factors, this bacterium sporulates and produces the enterotoxin in the intestines.Ítem Protein composition of the outermost exosporium-like layer of Clostridium difficile 630 spores(Elsevier, 2015-06) Díaz-González, Fernando; Milano, Mauro; Olguin-Araneda, Valeria; Pizarro-Cerda, Jaime; Castro-Córdova, Pablo; Tzeng, Shin-Chen; Maier, Claudia S.; Sarker, Mahfuzur R.; Paredes-Sabja, DanielClostridium difficile spores are considered the morphotype of infection, transmission and persistence of C. difficile infections. There is a lack of information on the composition of the outermost exosporium layer of C. difficile spores. Using recently developed exosporium removal methods combined with MS/MS, we have established a gel-free approach to analyze the proteome of the exosporium of C. difficile spores of strain 630. A total of 184 proteins were found in the exosporium layer of C. difficile spores. We identified 7 characterized spore coat and/or exosporium proteins; 6 proteins likely to be involved in spore resistance; 6 proteins possibly involved in pathogenicity; 13 uncharacterized proteins; and 146 cytosolic proteins that might have been encased into the exosporium during assembly, similarly as reported for Bacillus anthracis and Bacillus cereus spores. We demonstrate through Flag-fusions that CotA and CotB are mainly located in the spore coat, while the exosporium collagen-like glycoproteins (i.e. BclA1, BclA2 and BclA3), the exosporium morphogenetic proteins CdeC and CdeM, and the uncharacterized exosporium proteins CdeA and CdeB are mainly located in the exosporium layer of C. difficile 630 spores. This study offers novel candidates of C. difficile exosporium proteins as suitable targets for detection, removal and spore-based therapies. Biological significance: This study offers a novel strategy to identify proteins of the exosporium layer of C. difficile spores and complements previous proteomic studies on the entire C. difficile spores and spore coat since it defines the proteome of the outermost layer of C. difficile spores, the exosporium. This study suggests that C. difficile spores have several proteins involved in protection against environmental stress as well as putative virulence factors that might play a role during infection. Spore exosporium structural proteins were also identified providing the ground basis for further functional studies of these proteins. Overall this work provides new protein target for the diagnosis and/or therapeutics that may contribute to combat C. difficile infections. difficile spores were developed. difficile spores. © 2015 Elsevier B.V.Ítem Sporulation and Germination in Clostridial Pathogens(American Society for Microbiology, 2019-12) Shen, Aimee; Edwards, Adrianne N.; Sarker, Mahfuzur R.; Paredes-Sabja, DanielAs obligate anaerobes, clostridial pathogens depend on their metabolically dormant, oxygen-tolerant spore form to transmit disease. However, the molecular mechanisms by which those spores germinate to initiate infection and then form new spores to transmit infection remain poorly understood. While sporulation and germination have been well characterized in Bacillus subtilis and Bacillus anthracis, striking differences in the regulation of these processes have been observed between the bacilli and the clostridia, with even some conserved proteins exhibiting differences in their requirements and functions. Here, we review our current understanding of how clostridial pathogens, specifically Clostridium perfringens, Clostridium botulinum, and Clostridioides difficile, induce sporulation in response to environmental cues, assemble resistant spores, and germinate metabolically dormant spores in response to environmental cues. We also discuss the direct relationship between toxin production and spore formation in these pathogens.Ítem Survival of Clostridium difficile spores at low water activity(Academic Press, 2017-08) Deng, Kai; Talukdar, Prabhat K.; Sarker, Mahfuzur R.; Paredes-Sabja, Daniel; Torres, J. AntonioClostridium difficile is frequently found in meat and meat products. Germination efficiency, defined as colony formation, was previously investigated at temperatures found in meat handling and processing for spores of strain M120 (animal isolate), R20291 (human isolate), and DK1 (beef isolate). In this study, germination efficiency of these spore strains was assessed in phosphate buffered saline (PBS, aw ∼1.00), commercial beef jerky (aw ∼0.82/0.72), and aw-adjusted PBS (aw ∼0.82/0.72). Surface hydrophobicity was followed for spores stored in PBS. After three months and for all PBS aw levels tested, M120 and DK1 spores showed a ∼1 decimal reduction in colony formation but this was not the case when kept in beef jerky suggesting a protective food matrix effect. During storage, and with no significant aw effect, an increase in colony formation was observed for R20291 spores kept in PBS (∼2 decimal log increase) and beef jerky (∼1 decimal log increase) suggesting a loss of spore superdormancy. For all strains, no significant changes in spore surface hydrophobicity were observed after storage. Collectively, these results indicate that depending on the germination properties of C. difficile spores and the media properties, their germination efficiency may increase or decrease during long term food storage. © 2017 Elsevier Ltd