Examinando por Autor "Schmidt, Ivan"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Fermion mass hierarchy in an extended left-right symmetric model(Springer Science and Business Media Deutschland GmbH, 2023-12) Bonilla, Cesar; Cárcamo Hernández A.E.; Kovalenko, Sergey; Lee H.; Pasechnik R.; Schmidt, IvanWe present a Left-Right symmetric model that provides an explanation for the mass hierarchy of the charged fermions within the framework of the Standard Model. This explanation is achieved through the utilization of both tree-level and radiative seesaw mechanisms. In this model, the tiny masses of the light active neutrinos are generated via a three-loop radiative inverse seesaw mechanism, with Dirac and Majorana submatrices arising at one-loop level. To the best of our knowledge, this is the first example of the inverse seesaw mechanism being implemented with both submatrices generated at one- loop level. The model contains a global U(1) X symmetry which, after its spontaneous breaking, allows for the stabilization of the Dark Matter (DM) candidates. We show that the electroweak precision observables, the electron and muon anomalous magnetic moments as well as the Charged Lepton Flavor Violating decays, μ → eγ, are consistent with the current experimental limits. In addition, we analyze the implications of the model for the 95 GeV diphoton excess recently reported by the CMS collaboration and demonstrate that such anomaly could be easily accommodated. Finally, we discuss qualitative aspects of DM in the considered model.Ítem Low-scale seesaw from neutrino condensation(Elsevier B.V., 2020-03) Dib, Claudio; Kovalenko, Sergey; Schmidt, Ivan; Smetana, AdamKnowledge of the mechanism of neutrino mass generation would help understand a lot more about Lepton Number Violation (LNV), the cosmological evolution of the Universe, or the evolution of astronomical objects. Here we propose a verifiable and viable extension of the Standard model for neutrino mass generation, with a low-scale seesaw mechanism via LNV condensation in the sector of sterile neutrinos. To prove the concept, we analyze a simplified model of just a single family of elementary particles and check it against a set of phenomenological constraints coming from electroweak symmetry breaking, neutrino masses, leptogenesis and dark matter. The model predicts (i) TeV scale quasi-degenerate heavy sterile neutrinos, suitable for leptogenesis with resonant enhancement of the CP asymmetry, (ii) a set of additional heavy Higgs bosons whose existence can be challenged at the LHC, (iii) an additional light and sterile Higgs scalar which is a candidate for decaying warm dark matter, and (iv) a majoron. Since the model is based on simple and robust principles of dynamical mass generation, its parameters are very restricted, but remarkably it is still within current phenomenological limits