Examinando por Autor "Schultheis, Mathias"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy(Institute of Physics Publishing, 2017-09) Hasselquist, Sten; Shetrone, Matthew; Smith, Verne; Holtzman, Jon; McWilliam, Andrew; Fernández-Trincado J.G.; Beers, Timothy C.; Majewski, Steven R.; Nidever, David L.; Tang, Baitian; Tissera, Patricia B.; Alvar, Emma Fernández; Allende Prieto, Carlos; Almeida, Andres; Anguiano, Borja; Battaglia, Giuseppina; Carigi, Leticia; Delgado Inglada, Gloria; Frinchaboy, Peter; Garcia-Hernández D.A.; Geisler, Doug; Minniti, Dante; Placco, Vinicius M.; Schultheis, Mathias; Sobeck, Jennifer; Villanova, SandroThe Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≈ -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function. © 2017. The American Astronomical Society. All rights reserved..Ítem Final Targeting Strategy for the SDSS-IV APOGEE-2S Survey(American Astronomical Society, 2021-12-01) Santana, Felipe A.; Beaton, Rachael L.; Covey, Kevin R.; O'Connell, Julia E.; Longa-Peña, Penélope; Cohen, Roger; Fernández-Trincado, José G.; Hayes, Christian R.; Zasowski, Gail; Sobeck, Jennifer S.; Majewski, Steven R.; Chojnowski, S. D.; De Lee, Nathan; Oelkers, Ryan J.; Stringfellow, Guy S.; Almeida, Andrés; Anguiano, Borja; Donor, John; Frinchaboy, Peter M.; Hasselquist, Sten; Johnson, Jennifer A.; Kollmeier, Juna A.; Nidever, David L.; Price-Whelan, Adrian M.; Rojas-Arriagada, Álvaro; Schultheis, Mathias; Shetrone, Matthew; Simon, Joshua D.; Aerts, Conny; Borissova, Jura; Drout, María R.; Geisler, Doug; Law, C. Y.; Medina, Nicolas; Minniti, Dante; Monachesi, Antonela; Muñoz, Ricardo R.; Poleski, Radosław; Roman-Lopes, Alexandre; Schlaufman, Kevin C.; Stutz, Amelia M.; Teske, Johanna; Tkachenko, Andrew; Van Saders, Jennifer L.; Weinberger, Alycia J.; Zoccali, ManuelaAPOGEE is a high-resolution (R ∼ 22,000), near-infrared, multi-epoch, spectroscopic survey of the Milky Way. The second generation of the APOGEE project, APOGEE-2, includes an expansion of the survey to the Southern Hemisphere called APOGEE-2S. This expansion enabled APOGEE to perform a fully panoramic mapping of all of the main regions of the Milky Way; in particular, by operating in the H band, APOGEE is uniquely able to probe the dust-hidden inner regions of the Milky Way that are best accessed from the Southern Hemisphere. In this paper we present the targeting strategy of APOGEE-2S, with special attention to documenting modifications to the original, previously published plan. The motivation for these changes is explained as well as an assessment of their effectiveness in achieving their intended scientific objective. In anticipation of this being the last paper detailing APOGEE targeting, we present an accounting of all such information complete through the end of the APOGEE-2S project; this includes several main survey programs dedicated to exploration of major stellar populations and regions of the Milky Way, as well as a full list of programs contributing to the APOGEE database through allocations of observing time by the Chilean National Time Allocation Committee and the Carnegie Institution for Science. This work was presented along with a companion article, Beaton et al. (2021), presenting the final target selection strategy adopted for APOGEE-2 in the Northern Hemisphere.Ítem How many components? Quantifying the complexity of the metallicity distribution in the Milky Way bulge with APOGEE(Oxford University Press, 2020-11-01) Rojas-Arriagada, Alvaro; Zasowski, Gail; Schultheis, Mathias; Zoccali, Manuela; Hasselquist, Sten; Chiappini, Cristina; Cohen, Roger E.; Cunha, Katia; Fernández-Trincado, José G.; Fragkoudi, Francesca; Garcia-Hernández, D. A.; Geisler, Doug; Gran, Felipe; Lian, Jianhui; Majewski, Steven; Minniti, Dante; Monachesi, Antonela; Nitschelm, Christian; Queiroz, Anna B. A.We use data of ~13 000 stars from the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment survey to study the shape of the bulge metallicity distribution function (MDF) within the region |l| = 11° and |b| = 13°, and spatially constrained to RGC = 3.5 kpc. We apply Gaussian mixture modelling and non-negative matrix factorization decomposition techniques to identify the optimal number and the properties of MDF components. We find that the shape and spatial variations of the MDF (at [Fe/H]=-1 dex) are well represented as a smoothly varying contribution of three overlapping components located at [Fe/H] = +0.32, -0.17, and -0.66 dex. The bimodal MDF found in previous studies is in agreement with our trimodal assessment once the limitations in sample size and individual measurement errors are taken into account. The shape of the MDF and its correlations with kinematics reveal different spatial distributions and kinematical structure for the three components co-existing in the bulge region. We confirm the consensus physical interpretation of metal-rich stars as associated with the secularly evolved disc into a boxy/peanut X-shape bar. On the other hand, metal-intermediate stars could be the product of in-situ formation at high redshift in a gas-rich environment characterized by violent and fast star formation. This interpretation would help us to link a present-day structure with those observed in formation in the centre of high-redshift galaxies. Finally, metal-poor stars may correspond to the metal-rich tail of the population sampled at lower metallicity from the study of RR Lyrae stars. Conversely, they could be associated with the metal-poor tail of the early thick disc.