Examinando por Autor "Seeger, Michael"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Genomic and physiological traits of the marine bacterium alcaligenes aquatilisQD168 isolated from quintero bay, central Chile, reveal a robust adaptive response to environmental stressors(Frontiers Media S.A., 2019-04) Durán, Roberto E.; Méndez, Valentina; Rodríguez Castro, Laura; Barra Sanhueza, Bárbara; Salvà Serra, Francisco; Moore, Edward R. B.; Castro Nallar, Eduardo; Seeger, MichaelAlcaligenes aquatilis QD168 is a marine, aromatic hydrocarbon-degrading bacterium, isolated from an oil-polluted sediment of Quintero Bay, an industrial-coastal zone that has been chronically impacted by diverse pollutants. The aims of this study were to characterize the phylogenomic positions of Alcaligenes spp. and to characterize the genetic determinants and the physiological response of A. aquatilis QD168 to model environmental stressors (benzene, oxidizing agents, and salt). Phylogenomic analyses, using 35 housekeeping genes, clustered A. aquatilis QD168 with four other strains of Alcaligenes spp. (A. aquatilis BU33N, A. faecalis JQ135, A. faecalis UBA3227, and A. faecalis UBA7629). Genomic sequence analyses of A. aquatilis QD168 with 25 Alcaligenes spp., using ANIb, indicated that A. aquatilis BU33N is the closest related strain, with 96.8% ANIb similarity. Strain QD168 harbors 95 genes encoding proteins of seven central catabolic pathways, as well as sixteen peripheral catabolic pathways/reactions for aromatic compounds. A. aquatilis QD168 was able to grow on 3-hydroxybenzoate, 4-hydroxybenzoate, benzoate, benzene, 3-hydroxycinnamate, cinnamate, anthranilate, benzamide, 4-aminobenzoate, nicotinate, toluene, biphenyl and tryptophan, as sole carbon or nitrogen source. Benzene degradation was further analyzed by growth, metabolite identification and gene expression analyses. Benzene strongly induced the expression of the genes encoding phenol hydroxylase (dmpP) and catechol 1,2-dioxygenase (catA). Additionally, 30 genes encoding transcriptional regulators, scavenging enzymes, oxidative damage repair systems and isozymes involved in oxidative stress response were identified. Oxidative stress response of strain QD168 to hydrogen peroxide and paraquat was characterized, demonstrating that A. aquatilis QD168 is notably more resistant to paraquat than to H2O2. Genetic determinants (47 genes) for osmoprotective responses were identified, correlating with observed high halotolerance by strain QD168. The physiological adaptation of A. aquatilis QD168 to environmental stressors such as pollutants, oxidative stress and salinity may be exploited for bioremediation of oil-polluted saline sites. © 2007 - 2019 Frontiers Media S.A. All Rights Reserved.Ítem Microdot method: used with chromogenic agar is a useful procedure for sanitary monitoring in aquaculture(UNIVERSIDAD CATOLICA DE VALPARAISO, 2016-09) Strahsburger, Erwin; Retamales, Patricio; Estrada, Juan; Seeger, MichaelThe microdot method is a downscaling methodology of traditional tenfold serial dilution procedure used in microbiology. The microdot method uses 100 mu L for serial dilution and count colonies in a spot of 10 mu L. In this study we counted colonies directly in a chromogenic agar plate to determine, at the same time, the presence and cell concentration of target bacteria required for sanitary monitoring of Chilean export fishery products. Due to among importers countries the most concerning bacteria included in sanitary monitoring are Escherichia coli, Listeria monocytogenes and Staphylococcus aureus, we used the chromogenic agar; CHROMagar ECC, CHROMagar Listeria and Baird Parker agar, respectively. The results shows no differences between quantitative results obtained with microdot and traditional method during the quantification of a culture of Escherichia coli (1.5 L). The sensitivity and specificity of the microdot method in association with each chromogenic agar was demonstrated in vitro with reference strains. In addition, the usefulness in sanitary monitoring of aquaculture procedures was evaluated in Artemia salina tanks. This method did not detected sanitary problems in surface water. Although other colonies grown in the chromogenic agar plate, their morphological and chromogenic properties not correspond to Escherichia coli, Listeria monocytogenes and Staphylococcus aureus, being identified as Salmonella enterica subsp. enterica, Microbacterium sp., Bacillus sp. and Staphylococcus pasteuri by 16S rRNA gene sequence analysis. Hence, we propose the microdot chromogenic method as a low cost, specific and reliable procedure for sanitary monitoring of aquaculture procedures.