Examinando por Autor "Shanmugaraj, Krishnamoorthy"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Catalytic pyrolysis of used tires on noble-metal-based catalysts to obtain high-value chemicals: Reaction pathways(Elsevier B.V., 2022-07-01) Osorio Vargas, Paula; Campos, Cristian H.; Torres, Cecilia C.; Herrera, Carla; Shanmugaraj, Krishnamoorthy; Bustamante, Tatiana M.; Diaz de Leon, J.N.; Medina, Francisco; Arteaga Pérez, Luis E.A systematic study on the use of noble metals (Pd, Pt, Au) supported on titanate nanotubes (NT-Ti) for selectively producing BTX and p-cymene from waste tire pyrolysis is provided here. All the materials were characterized for chemical, textural and structural properties using a range of analytical techniques. The M/NT-Ti (M: Pd, Pt, or Au) catalysts exhibit low nanoparticle sizes (1.8 support > non-catalyst. The Py-GC/MS suggest that the catalysts participate in the secondary reactions of dealkylation, dehydrogenation, isomerization, aromatization, and cyclization leading to a higher formation of BTX than the uncatalyzed reaction. Finally, a comprehensive reaction pathway describing the catalytic pyrolysis of WT over Pd/NT-Ti was proposed by studying the catalytic pyrolysis of individual polymers constituting the waste tires, and D,L-Limonene. © 2021 Elsevier B.V.Ítem Liquid Phase Hydrogenation of Pharmaceutical Interest Nitroarenes over Gold-Supported Alumina Nanowires Catalysts(MDPI AG, 2020-02) Shanmugaraj, Krishnamoorthy; Bustamante, Tatiana M.; Campos, Cristian H.; Torres, Cecilia C.In this work, Au nanoparticles, supported in Al2O3 nanowires (ANW) modified with (3-aminopropyl)trimethoxysilane were synthetized, for their use as catalysts in the hydrogenation reaction of 4-(2-fluoro-4-nitrophenyl)-morpholine and 4-(4-nitrophenyl)morpholin-3-one. ANW was obtained by hydrothermal techniques and the metal was incorporated by the reduction of the precursor with NaBH4 posterior to superficial modification. The catalysts were prepared at different metal loadings and were characterized by different techniques. The characterization revealed structured materials in the form of nanowires and a successful superficial modification. All catalysts show that Au is in a reduced state and the shape of the nanoparticles is spherical, with high metal dispersion and size distributions from 3.7 to 4.6 nm. The different systems supported in modified-ANW were active and selective in the hydrogenation reaction of both substrates, finding for all catalytic systems a selectivity of almost 100% to the aromatic amine. Catalytic data showed pseudo first-order kinetics with respect to the substrate for all experimental conditions used in this work. The solvent plays an important role in the activity and selectivity of the catalyst, where the highest efficiency and operational stability was achieved when ethanol was used as the solvent