Examinando por Autor "Singh M."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem A study in scarlet: I. Photometric properties of a sample of intermediate-luminosity red transients(EDP Sciences, 2025-03) Valerin G.; Pastorello A.; Reguitti A.; Benetti S.; Cai Y.-Z.; Chen T.-W.; Eappachen D.; Elias-Rosa N.; Fraser M.; Gangopadhyay A.; Hsiao E.Y.; Howell D.A.; Inserra C.; Izzo L.; Jencson J.; Kankare E.; Kotak R.; Mazzali P.A.; Misra K.; Pignata G.; Prentice S.J.; Sand D.J.; Smartt S.J.; Stritzinger M.D.; Tartaglia L.; Valenti S.; Anderson J.P.; Andrews J.E.; Amaro R.C.; Brennan S.; Bufano F.; Callis E.; Cappellaro E.; Dastidar R.; Della Valle M.; Fiore A.; Fulton M.D.; Galbany L.; Heikkilä T.; Hiramatsu D.; Karamehmetoglu E.; Kuncarayakti H.; Leloudas G.; Lundquist M.; Mccully C.; Müller-Bravo T.E.; Nicholl M.; Ochner P.; Padilla Gonzalez E.; Paraskeva E.; Pellegrino C.; Rau A.; Reichart D.E.; Reynolds T.M.; Roy R.; Salmaso I.; Singh M.; Turatto M.; Tomasella L.; Wyatt S.Aims. We investigate the photometric characteristics of a sample of intermediate-luminosity red transients (ILRTs), a class of elusive objects with peak luminosity between that of classical novae and standard supernovae. Our goal is to provide a stepping stone in the path to reveal the physical origin of such events, thanks to the analysis of the datasets collected. Methods. We present the multi-wavelength photometric follow-up of four ILRTs, namely NGC 300 2008OT-1, AT 2019abn, AT 2019ahd, and AT 2019udc. Through the analysis and modelling of their spectral energy distribution and bolometric light curves, we inferred the physical parameters associated with these transients. Results. All four objects display a single-peaked light curve which ends in a linear decline in magnitudes at late phases. A flux excess with respect to a single blackbody emission is detected in the infrared domain for three objects in our sample, a few months after maximum. This feature, commonly found in ILRTs, is interpreted as a sign of dust formation. Mid-infrared monitoring of NGC 300 2008OT-1 761 days after maximum allowed us to infer the presence of ∼10-3-10-5 M⊙ of dust, depending on the chemical composition and the grain size adopted. The late-time decline of the bolometric light curves of the considered ILRTs is shallower than expected for 56Ni decay, hence requiring an additional powering mechanism. James Webb Space Telescope observations of AT 2019abn prove that the object has faded below its progenitor luminosity in the mid-infrared domain, five years after its peak. Together with the disappearance of NGC 300 2008OT-1 in Spitzer images seven years after its discovery, this supports the terminal explosion scenario for ILRTs. With a simple semi-analytical model we tried to reproduce the observed bolometric light curves in the context of a few solar masses ejected at few 103 km s-1 and enshrouded in an optically thick circumstellar medium. © The Authors 2025.Ítem SN 2018is: A low-luminosity Type IIP supernova with narrow hydrogen emission lines at early phases(EDP Sciences, 0025-02) Dastidar R.; Misra K.; Valenti S.; Sand D.J.; Reguitti A.; Pignata G. h; Benetti S.; Bose S.; Gangopadhyay A.; Singh M.; Tomasella LWe present a comprehensive photometric and spectroscopic study of the Type IIP supernova (SN) 2018is. The V band luminosity and the expansion velocity at 50 days post-explosion are −15.1 ± 0.2 mag (corrected for AV = 1.34 mag) and 1400 km s−1, classifying it as a low-luminosity SN II. The recombination phase in the V band is shorter, lasting around 110 days, and exhibits a steeper decline (1.0 mag per 100 days) compared to most other low-luminosity SNe II. Additionally, the optical and near-infrared spectra display hydrogen emission lines that are strikingly narrow, even for this class. The Fe ii and Sc ii line velocities are at the lower end of the typical range for low-luminosity SNe II. Semi-analytical modelling of the bolometric light curve suggests an ejecta mass of ∼8 M, corresponding to a pre-supernova mass of ∼9.5 M, and an explosion energy of ∼0.40 × 1051 erg. Hydrodynamical modelling further indicates that the progenitor had a zero-age main sequence mass of 9 M, coupled with a low explosion energy of 0.19 × 1051 erg. The nebular spectrum reveals weak [O i] λλ6300,6364 lines, consistent with a moderate-mass progenitor, while features typical of Fe core-collapse events, such as He i, [C i], and Fe i, are indiscernible. However, the redder colours and low ratio of Ni to Fe abundance do not support an electron-capture scenario either. As a low-luminosity SN II with an atypically steep decline during the photospheric phase and remarkably narrow emission lines, SN 2018is contributes to the diversity observed within this population. © The Authors 2025.