Examinando por Autor "Stritzinger, M."
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Optical photometry and spectroscopy of the 1987A-like supernova 2009mw(OXFORD UNIV PRESS, 2016-08) Takáts, K.; Pignata, G.; Bersten, M.; Rojas Kaufmann, M. L.; Anderson, J. P.; Folatelli, G.; Hamuy, M.; Stritzinger, M.; Haislip, J. B.; LaCluyze, A. P.; Moore, J. P.; Reichart, D.We present optical photometric and spectroscopic observations of the 1987A-like supernova (SN) 2009mw. Our BVRI and g ' r ' i ' z ' photometry covers 167 d of evolution, including the rise to the light-curve maximum, and ends just after the beginning of the linear tail phase. We compare the observational properties of SN 2009mw with those of other SNe belonging to the same subgroup and find that it shows similarities to several objects. The physical parameters of the progenitor and the SN are estimated through hydrodynamical modelling, and yield an explosion energy of 1 foe, a pre-SN mass of 19 M-aS (TM), a progenitor radius of 30 R-aS (TM) and a Ni-56 mass of 0.062 M-aS (TM). These values indicate that the progenitor of SN 2009mw was a blue supergiant star, similar to the progenitor of SN 1987A. We examine the host environment of SN 2009mw and find that it emerged from a population with a slightly subsolar metallicty.Ítem SN 2016gsd: An unusually luminous and linear Type II supernova with high velocities(Oxford University Press, 2020-04) Reynolds, T.M.; Fraser, M.; Mattila, S.; Ergon, M.; Dessart, L.; Lundqvist, P.; Dong, S.; Elias-Rosa, N.; Galbany, L.; Gutierrez, C.P.; Kangas, T.; Kankare, E.; Kotak, R.; Kuncarayakti, H.; Pastorello, A.; Rodriguez, O.; Smartt, S.J.; Stritzinger, M.; Tomasella, L.; Chen, P.; Harmanen, J.; Hosseinzadeh, G.; Howell, D.A.; Inserra, C.; Nicholl, M.; Nielsen, M.; Smith, K.; Somero, A.; Tronsgaard, R.; Young, D.R.We present observations of the unusually luminous Type II supernova (SN) 2016gsd. With a peak absolute magnitude of V = -19.95 ± 0.08, this object is one of the brightest Type II SNe, and lies in the gap of magnitudes between the majority of Type II SNe and the superluminous SNe. Its light curve shows little evidence of the expected drop from the optically thick phase to the radioactively powered tail. The velocities derived from the absorption in H α are also unusually high with the blue edge tracing the fastest moving gas initially at 20 000 km s-1, and then declining approximately linearly to 15 000 km s-1 over ∼100 d. The dwarf host galaxy of the SN indicates a low-metallicity progenitor which may also contribute to the weakness of the metal lines in its spectra. We examine SN 2016gsd with reference to similarly luminous, linear Type II SNe such as SNe 1979C and 1998S, and discuss the interpretation of its observational characteristics. We compare the observations with a model produced by the jekyll code and find that a massive star with a depleted and inflated hydrogen envelope struggles to reproduce the high luminosity and extreme linearity of SN 2016gsd. Instead, we suggest that the influence of interaction between the SN ejecta and circumstellar material can explain the majority of the observed properties of the SN. The high velocities and strong H α absorption present throughout the evolution of the SN may imply a circumstellar medium configured in an asymmetric geometry. © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.Ítem SN 2017dio: A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium(Institute of Physics Publishing, 2018-02) Kuncarayakti, H.; Maeda, K.; Ashall, C.J.; Prentice, S.J.; Mattila, S.; Kankare, E.; Fransson, C.; Lundqvist, P.; Pastorello, A.; Leloudas, G.; Anderson, J.P.; Benetti, S.; Bersten, M.C.; Cappellaro, E.; Cartier, R.; Denneau, L.; Della Valle, M.; Elias-Rosa, N.; Folatelli, G.; Fraser, M.; Galbany, L.; Gall, C.; Gal-Yam, A.; Gutiérrez, C.P.; Hamanowicz, A.; Heinze, A.; Inserra, C.; Kangas, T.; Mazzali, P.; Melandri, A.; Pignata, G.; Rest, A.; Reynolds, T.; Roy, R.; Smartt, S.J.; Smith, K.W.; Sollerman, J.; Somero, A.; Stalder, B.; Stritzinger, M.; Taddia, F.; Tomasella, L.; Tonry, J.; Weiland, H.; Young, D.R.SN 2017dio shows both spectral characteristics of a type-Ic supernova (SN) and signs of a hydrogen-rich circumstellar medium (CSM). Prominent, narrow emission lines of H and He are superposed on the continuum. Subsequent evolution revealed that the SN ejecta are interacting with the CSM. The initial SN Ic identification was confirmed by removing the CSM interaction component from the spectrum and comparing with known SNe Ic and, reversely, adding a CSM interaction component to the spectra of known SNe Ic and comparing them to SN 2017dio. Excellent agreement was obtained with both procedures, reinforcing the SN Ic classification. The light curve constrains the pre-interaction SN Ic peak absolute magnitude to be around Mg = -17.6 mag. No evidence of significant extinction is found, ruling out a brighter luminosity required by an SN Ia classification. These pieces of evidence support the view that SN 2017dio is an SN Ic, and therefore the first firm case of an SN Ic with signatures of hydrogen-rich CSM in the early spectrum. The CSM is unlikely to have been shaped by steady-state stellar winds. The mass loss of the progenitor star must have been intense, M ∼ 0.02 ϵ Hα/0.01)-1(vwind/500 km s-1) (vshock 10,000 kms-1)-3Me yr-1, peaking at a few decades before the SN. Such a high mass-loss rate might have been experienced by the progenitor through eruptions or binary stripping.Ítem The double-peaked Type Ic supernova 2019cad: another SN 2005bf-like object(Oxford University Press, 2021-04) Gutierrez, C. P; Bersten, M. C.; Orellana, M; Pastorello, A.; Ertini, K.; Folatelli, G.; Pignata, G.; Anderson, J.P.; Smartt, S.; Sullivan, M.; Pursiainen, M.; Inserra, C.; Elias-Rosa, N.; Fraser, M.; Kankare, E.; Moran, S.; Reguitti, A.; Reynolds, T.M; Stritzinger, M.; Burke, J.; Frohmaier, C.; Galbany, L.; Hiramatsu, D.; Howell, D. A.; Kuncarayakti, H.; Mattila, S.; Muller-Bravo, T.; Pellegrino, C.; Smith, M.We present the photometric and spectroscopic evolution of supernova (SN) 2019cad during the first ∼100 d from explosion. Based on the light-curve morphology, we find that SN 2019cad resembles the double-peaked Type Ib/c SN 2005bf and the Type Ic PTF11mnb. Unlike those two objects, SN 2019cad also shows the initial peak in the redder bands. Inspection of the g-band light curve indicates the initial peak is reached in ∼8 d, while the r-band peak occurred ∼15 d post-explosion. A second and more prominent peak is reached in all bands at ∼45 d past explosion, followed by a fast decline from ∼60 d. During the first 30 d, the spectra of SN 2019cad show the typical features of a Type Ic SN, however, after 40 d, a blue continuum with prominent lines of Si II λ6355 and CII λ6580 is observed again. Comparing the bolometric light curve to hydrodynamical models, we find that SN 2019cad is consistent with a pre-SN mass of 11 M, and an explosion energy of 3.5 × 1051 erg. The light-curve morphology can be reproduced either by a double-peaked 56Ni distribution with an external component of 0.041 M, and an internal component of 0.3 M or a double-peaked 56Ni distribution plus magnetar model (P ∼ 11 ms and B ∼ 26 × 1014 G). If SN 2019cad were to suffer from significant host reddening (which cannot be ruled out), the 56Ni model would require extreme values, while the magnetar model would still be feasible