Examinando por Autor "Tang, B."
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem A Chemical and Kinematical Analysis of the Intermediate-age Open Cluster IC 166 from APOGEE and Gaia DR2(Institute of Physics Publishing, 2018-09) Schiappacasse-Ulloa, J.; Tang, B.; Fernández-Trincado, J.G.; Zamora, O.; Geisler, D.; Frinchaboy, P.; Schultheis, M.; Dell'Agli, F.; Villanova, S.; Masseron, T.; Mészáros, S.; Souto, D.; Hasselquist, S.; Cunha, K.; Smith, V.V.; García-Hernández, D.A.; Vieira, K.; Robin, A.C.; Minniti, D.; Zasowski, G.; Moreno, E.; Pérez-Villegas, A.; Lane, R.R.; Ivans, I.I.; Pan, K.; Nitschelm, C.; Santana, F.A.; Carrera, R.; Roman-Lopes, A.IC 166 is an intermediate-age open cluster (OC) (∼1 Gyr) that lies in the transition zone of the metallicity gradient in the outer disk. Its location, combined with our very limited knowledge of its salient features, make it an interesting object of study. We present the first high-resolution spectroscopic and precise kinematical analysis of IC 166, which lies in the outer disk with R GC ∼ 12.7 kpc. High-resolution H-band spectra were analyzed using observations from the SDSS-IV Apache Point Observatory Galactic Evolution Experiment survey. We made use of the Brussels Automatic Stellar Parameter code to provide chemical abundances based on a line-by-line approach for up to eight chemical elements (Mg, Si, Ca, Ti, Al, K, Mn, and Fe). The α-element (Mg, Si, Ca, and whenever available Ti) abundances, and their trends with Fe abundances have been analyzed for a total of 13 high-likelihood cluster members. No significant abundance scatter was found in any of the chemical species studied. Combining the positional, heliocentric distance, and kinematic information, we derive, for the first time, the probable orbit of IC 166 within a Galactic model including a rotating boxy bar, and found that it is likely that IC 166 formed in the Galactic disk, supporting its nature as an unremarkable Galactic OC with an orbit bound to the Galactic plane. © 2018. The American Astronomical Society.Ítem Disentangling the Galactic Halo with APOGEE. I. Chemical and Kinematical Investigation of Distinct Metal-poor Populations(Institute of Physics Publishing, 2018) Hayes, C.R.; Majewski, S.R.; Shetrone, M.; Fernández-Alvar, E.; Prieto, C.A.; Schuster, W.J.; Carigi, L.; Cunha, K.; Smith, V.V.; Sobeck, J.; Almeida, A.; Beers, T.C.; Carrera, R.; Fernández-Trincado, J.G.; García-Hernández, D.A.; Geisler, D.; Lane, R.R.; Lucatello, S.; Matthews, A.M.; Minniti, D.; Nitschelm, C.; Tang, B.; Tissera, P.B.; Zamora, O.We find two chemically distinct populations separated relatively cleanly in the [Fe/H]-[Mg/Fe] plane, but also distinguished in other chemical planes, among metal-poor stars (primarily with metallicities [Fe H] < -0.9) observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and analyzed for Data Release 13 (DR13) of the Sloan Digital Sky Survey. These two stellar populations show the most significant differences in their [X/Fe] ratios for the α-elements, C+N, Al, and Ni. In addition to these populations having differing chemistry, the low metallicity high-Mg population (which we denote "the HMg population") exhibits a significant net Galactic rotation, whereas the low-Mg population (or "the LMg population") has halo-like kinematics with little to no net rotation. Based on its properties, the origin of the LMg population is likely an accreted population of stars. The HMg population shows chemistry (and to an extent kinematics) similar to the thick disk, and is likely associated with in situ formation. The distinction between the LMg and HMg populations mimics the differences between the populations of low- and high-α halo stars found in previous studies, suggesting that these are samples of the same two populations.Ítem Disentangling the Galactic Halo with APOGEE. II. Chemical and Star Formation Histories for the Two Distinct Populations(Institute of Physics Publishing, 2018) Fernández-Alvar, E.; Carigi, L.; Schuster, W.J.; Hayes, C.R.; Ávila-Vergara, N.; Majewski, S.R.; Allende Prieto, C.; Beers, T.C.; Sánchez, S.F.; Zamora, O.; García-Hernández, D.A.; Tang, B.; Fernández-Trincado, J.G.; Tissera, P.; Geisler, D.; Villanova, S.The formation processes that led to the current Galactic stellar halo are still under debate. Previous studies have provided evidence for different stellar populations in terms of elemental abundances and kinematics, pointing to different chemical and star formation histories (SFHs). In the present work, we explore, over a broader range in metallicity (-2.2 < [Fe H] < +0.5), the two stellar populations detected in the first paper of this series from metal-poor stars in DR13 of the Apache Point Observatory Galactic Evolution Experiment (APOGEE). We aim to infer signatures of the initial mass function (IMF) and the SFH from the two α-to-iron versus iron abundance chemical trends for the most APOGEE-reliable α-elements (O, Mg, Si, and Ca). Using simple chemical-evolution models, we infer the upper mass limit (M up) for the IMF and the star formation rate, and its duration for each population. Compared with the low-α population, we obtain a more intense and longer-lived SFH, and a top-heavier IMF for the high-α population.Ítem The Gaia-ESO Survey: Inhibited extra mixing in two giants of the open cluster Trumpler 20?(EDP SCIENCES, 2016-06) Smiljanic, R.; Franciosini, E.; Randich, S.; Magrini, L.; Bragaglia, A.; Pasquini, L.; Vallenari, A.; Tautvaišienė, G.; Biazzo, K.; Frasca, A.; Donati, P.; Delgado Mena, E.; Casey, A. R.; Geisler, D.; Villanova, S.; Tang, B.; Sousa, S. G.; Gilmore, G.; Bensby, T.; François, P.; Koposov, S. E.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Costado, M. T.; Hourihane, A.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.; Martell, S.Aims. We report the discovery of two Li-rich giants, with A(Li) ~ 1.50, in an analysis of a sample of 40 giants of the open cluster Trumpler 20 (with turnoff mass ~1.8 M⊙). The cluster was observed in the context of the Gaia-ESO Survey. Methods. The atmospheric parameters and Li abundances were derived using high-resolution UVES spectra. The Li abundances were corrected for nonlocal thermodynamical equilibrium (non-LTE) effects. Results. Only upper limits of the Li abundance could be determined for the majority of the sample. Two giants with detected Li turned out to be Li rich: star MG 340 has A(Li)non−LTE = 1.54 ± 0.21 dex and star MG 591 has A(Li)non−LTE = 1.60 ± 0.21 dex. Star MG 340 is on average ~0.30 dex more rich in Li than stars of similar temperature, while for star MG 591 this difference is on average ~0.80 dex. Carbon and nitrogen abundances indicate that all stars in the sample have completed the first dredge-up. Conclusions. The Li abundances in this unique sample of 40 giants in one open cluster clearly show that extra mixing is the norm in this mass range. Giants with Li abundances in agreement with the predictions of standard models are the exception. To explain the two Li-rich giants, we suggest that all events of extra mixing have been inhibited. This includes rotation-induced mixing during the main sequence and the extra mixing at the red giant branch luminosity bump. Such inhibition has been suggested in the literature to occur because of fossil magnetic fields in red giants that are descendants of main-sequence Ap-type stars.