Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Tarisciotti, Luca"

Mostrando 1 - 7 de 7
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Advanced Modulations for a Current-Fed Isolated DC-DC Converter with Wide-Voltage-Operating Ranges
    (Institute of Electrical and Electronics Engineers Inc., 2019) Chen, Linglin; Tarisciotti, Luca; Costabeber, Alessandro; Gao, Fei; Wheeler, Patricka; Zanchetta, Pericle
    An active-bridge-active-clamp (ABAC) topology with its associated switching patterns and modulation techniques is introduced in this paper. The topology has been designed to comply with stringent power quality requirements in a More Electric Aircraft application. The dual transformer secondary structure of the ABAC allows the definition of a particular phase shift-based switching pattern. The proposed switching pattern ensures not only the output current switching harmonics elimination but also even power sharing between the secondary half-bridges. Consequently, passives on the low-voltage side of the converter are minimized, and transformer dc bias is eliminated. All these features can be achieved independently from the operating point of the converter. In this paper, the basic operation of the ABAC converter is first introduced. The theoretical analysis of switching harmonics elimination and power sharing is then carried out in the development of the proposed switching patterns. The theoretical claims are validated by both simulation and experimental results on a 10-kW 270-V/28-V ABAC converter. © 2013 IEEE.
  • No hay miniatura disponible
    Ítem
    Distributed Predictive Secondary Control for Imbalance Sharing in AC Microgrids
    (Institute of Electrical and Electronics Engineers Inc., 2022-01-01) Navas-Fonseca, Alex; Burgos-Mellado, Claudio; Gomez, Juan S.; Donoso, Felipe; Tarisciotti, Luca; Saez, Doris; Cardenas, Roberto; Sumner, Mark
    This paper proposes a distributed predictive secondary control strategy to share imbalance in three-phase, three-wire isolated AC Microgrids. The control is based on a novel approach where the imbalance sharing among distributed generators is controlled through the control of single-phase reactive power. The main characteristic of the proposed methodology is the inclusion of an objective function and dynamic models as constraints in the formulation. The controller relies on local measurements and information from neighboring distributed generators, and it performs the desired control action based on a constrained cost function minimization. The proposed distributed model predictive control scheme has several advantages over solutions based on virtual impedance loops or based on the inclusion of extra power converters for managing single-phase reactive power among distributed generators. In fact, with the proposed technique the sharing of imbalance is performed directly in terms of single-phase reactive power and without the need for adding extra power converters into the microgrid. Contrary to almost all reported works in this area, the proposed approach enables the control of various microgrid parameters within predefined bands, providing a more flexible control system. Extensive simulation and Hardware in the Loop studies verify the performance of the proposed control scheme. Moreover, the controller's scalability and a comparison study, in terms of performance, with the virtual impedance approach were carried out. © 2010-2012 IEEE.
  • No hay miniatura disponible
    Ítem
    Latest Advances of Model Predictive Control in Electrical Drives - Part I: Basic Concepts and Advanced Strategies
    (Institute of Electrical and Electronics Engineers Inc., 2022-04-01) Rodriguez, Jose; Garcia, Cristian; Mora, Andres; Flores-Bahamonde, Freddy; Acuna, Pablo; Novak, Mateja; Zhang, Yongchang; Tarisciotti, Luca; Davari, S. Alireza; Zhang, Zhenbin; Wang, Fengxiang; Norambuena, Margarita; Dragicevic, Tomislav; Blaabjerg, Frede; Geyer, Tobias; Kennel, Ralph; Khaburi, Davood Arab; Abdelrahem, Mohamed; Zhang, Zhen; Mijatovic, Nenad; Aguilera, Ricardo P.
    The application of model predictive control in electrical drives has been studied extensively in the past decade. This article presents what the authors consider the most relevant contributions published in the last years, mainly focusing on three relevant issues: weighting factor calculation when multiple objectives are utilized in the cost function, current/torque harmonic distortion optimization when the power converter switching frequency is reduced, and robustness improvement under parameters uncertainties. Therefore, this article aims to enable readers to have a more precise overview while facilitating their future research work in this exciting area.
  • No hay miniatura disponible
    Ítem
    Latest Advances of Model Predictive Control in Electrical Drives - Part II: Applications and Benchmarking With Classical Control Methods
    (Institute of Electrical and Electronics Engineers Inc., 2022-05-01) Rodriguez, Jose; Garcia, Cristian; Mora, Andres; Davari, S. Alireza; Rodas, Jorge; Valencia, Diego Fernando; Elmorshedy, Mahmoud; Wang, Fengxiang; Zuo, Kunkun; Tarisciotti, Luca; Flores-Bahamonde, Freddy; Xu, Wei; Zhang, Zhenbin; Zhang, Yongchang; Norambuena, Margarita; Emadi, Ali; Geyer, Tobias; Kennel, Ralph; Dragicevic, Tomislav; Khaburi, Davood Arab; Zhang, Zhen; Abdelrahem, Mohamed; Mijatovic, Nenad
    This article presents the application of model predictive control (MPC) in high-performance drives. A wide variety of machines have been considered: Induction machines, synchronous machines, linear motors, switched reluctance motors, and multiphase machines. The control of these machines has been done by introducing minor and easy-to-understand modifications to the basic predictive control concept, showing the high flexibility and simplicity of the strategy. The second part of the article is dedicated to the performance comparison of MPC with classical control techniques such as field-oriented control and direct torque control. The comparison considers the dynamic behavior of the drive and steady-state performance metrics, such as inverter losses, current distortion in the motor, and acoustic noise. The main conclusion is that MPC is very competitive concerning classic control methods by reducing the inverter losses and the current distortion with comparable acoustic noise.
  • Cargando...
    Miniatura
    Ítem
    Model Predictive Control for Dual-Active-Bridge Converters Supplying Pulsed Power Loads in Naval DC Micro-Grids
    (Institute of Electrical and Electronics Engineers Inc.v, 2020-02) Chen, Linglin; Shao, Shuai; Xiao, Qian; Tarisciotti, Luca; Wheeler, Patrick W.; Dragičević, Tomisla
    Pulsed power loads (PPLs) are becoming prevalent in medium-voltage naval dc micro-grids. To alleviate their effects on the system, energy storages are commonly installed. For optimal performance, their interface converters need to have fast dynamics and excellent disturbance rejection capability. Moreover, these converters often need to have voltage transformation and galvanic isolation capability since common energy storage technologies such as batteries and supercaps are typically assembled with low-voltage strings. In order to address these issues, a moving discretized control set model predictive control (MDCS-MPC) is proposed in this paper and applied on a dual-active-bridge converter. Fixed switching frequency is maintained, enabling easy passive components design. The proposed MDCS-MPC has a reduced prediction horizon, which allows low computational burden. The operating principle of the MDCS-MPC is introduced in the development of a cost function, which provides stiff voltage regulation. Resonance damping and sampling noise resistance can also be achieved with the proposed cost function. An adaptive step is introduced to enable a fast transition. Assessments on the performance of the proposed MDCS-MPC are conducted. Comparisons with other control methods are also provided. Experimental validations on a 300 V/300 V 20-kHz 1-kW dual-active-bridge converter are carried out to verify the theoretical claims. © 1986-2012 IEEE.
  • Cargando...
    Miniatura
    Ítem
    Predictive Control for Current Distortion Mitigation in Mining Power Grids
    (MDPI, 2023-03) Gómez, Juan S.; Navas-Fonseca, Alex; Flores-Bahamonde, Freddy; Tarisciotti, Luca; Garcia, Cristian; Nuñez, Felipe; Rodriguez, Jose; Cipriano, Aldo Z.
    Current distortion is a critical issue of power quality because the low frequency harmonics injected by adjustable speed drives increase heating losses in transmission lines and induce torque flickering in induction motors, which are widely used in mining facilities. Although classical active filtering techniques mitigate the oscillatory components of imaginary power, they may not be sufficient to clean the sensitive nodes of undesirable power components, some of which are related to real power. However, the usage of power electronic converters for distributed generation and energy storage, allows the integration of complementary power quality control objectives in electrical systems, by using the same facilities required for active power transferring. This paper proposes a predictive control-based scheme for mitigating the current distortion in the coupling node between utility grid and the mining facility power system. Instead of the classical approach of active filtering, this task is included as a secondary level objective control referred into the microgrid control hierarchy. Hardware-in-the-Loop simulation results showed that the proposed scheme is capable of bounding the current distortion, according to IEEE standard 1547, for both individual harmonics and the total rated current distortion, through inequality constraints of the optimization problem.
  • No hay miniatura disponible
    Ítem
    Research and Realization of High-Power Medium-Voltage Active Rectifier Concepts for Future Hybrid-Electric Aircraft Generation
    (Institute of Electrical and Electronics Engineers Inc., 2021-12) Trentin, Andrew; Sala, Giacomo; Tarisciotti, Luca; Galassini, Alessandro; Degano, Michele; Connor, Peter H.; Golovanov, Dmitry; Gerada, David; Xu, Zeyuan; La Rocca, Antonino; Eastwick, Carol N.; Pickering, Stephen J.; Wheeler, Patrick; Clare, Jon C.; Gerada, Chris
    In this article, we describe the research and development of a 3 kV active rectifier for a 4 MW aerospace generator drive system demonstrator. The converter is fed by a multiphase high-speed/high-frequency permanent magnet generator. The main aim of the work is to demonstrate for the first time the feasibility of an MW-class generator system meeting future hybrid-electric propulsion requirements. A concept with multiple and isolated three-phase systems feeding different power buses is proposed to meet the availability requirements. Multiple converters (one for each three-phase system) are connected in series and/or in parallel to achieve the rated power and dc-link voltage. This article describes the key design concepts and the development and testing of the converter to meet the challenging application requirements. Reduced power tests are carried out on a full-scale 4 MW converter prototype, validating the proposed design. The work represents a step forward in terms of voltage, power, and output frequency with respect to the state-of-the-art. © 1982-2012 IEEE.