Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Tejón, Gabriela"

Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    CD73-mediated adenosine production promotes stem cell-like properties in mouse Tc17 cells
    (Blackwell Publishing Ltd, 2015-12) Flores-Santibáñez, Felipe; Fernández, Dominique; Meza, Daniel; Tejón, Gabriela; Vargas, Leonardo; Varela-Nallar, Lorena; Arredondo, Sebastián; Guixé, Victoria; Rosemblatt, Mario; Bono, María Rosa; Sauma, Daniela
    The CD73 ectonucleotidase catalyses the hydrolysis of AMP to adenosine, an immunosuppressive molecule. Recent evidence has demonstrated that this ectonucleotidase is up-regulated in T helper type 17 cells when generated in the presence of transforming growth factor-β (TGF-β), and hence CD73 expression is related to the acquisition of immunosuppressive potential by these cells. TGF-β is also able to induce CD73 expression in CD8+ T cells but the function of this ectonucleotidase in CD8+ T cells is still unknown. Here, we show that Tc17 cells present high levels of the CD73 ectonucleotidase and produce adenosine; however, they do not suppress the proliferation of CD4+ T cells. Interestingly, we report that adenosine signalling through A2A receptor favours interleukin-17 production and the expression of stem cell-associated transcription factors such as tcf-7 and lef-1 but restrains the acquisition of Tc1-related effector molecules such as interferon-γ and Granzyme B by Tc17 cells. Within the tumour microenvironment, CD73 is highly expressed in CD62L+ CD127+ CD8+ T cells (memory T cells) and is down-regulated in GZMB+ KLRG1+ CD8+ T cells (terminally differentiated T cells), demonstrating that CD73 is expressed in memory/naive cells and is down-regulated during differentiation. These data reveal a novel function of CD73 ectonucleotidase in arresting CD8+ T-cell differentiation and support the idea that CD73-driven adenosine production by Tc17 cells may promote stem cell-like properties in Tc17 cells.
  • Cargando...
    Miniatura
    Ítem
    Purinergic Signaling as a Regulator of Th17 Cell Plasticity
    (PUBLIC LIBRARY SCIENCE, 2016-06) Fernández, Dominique; Flores-Santibáñez, Felipe; Neira, Jocelyn; Osorio-Barrios, Francisco; Tejón, Gabriela; Nuñez, Sarah; Hidalgo, Yessia; Fuenzalida, Maria Jose; Meza, Daniel; Ureta, Gonzalo; Lladser, Alvaro; Pacheco, Rodrigo; Acuña-Castillo, Claudio; Guixé, Victoria; Quintana, Francisco J.; Bono, Maria Rosa; Rosemblatt, Mario; Sauma, Daniela
    T helper type 17 (Th17) lymphocytes, characterized by the production of interleukin-17 and other pro-inflammatory cytokines, are present in intestinal lamina propria and have been described as important players driving intestinal inflammation. Recent evidence, supporting the notion of a functional and phenotypic instability of Th17 cells, has shown that Th17 differentiate into type 1 regulatory (Tr1) T cells during the resolution of intestinal inflammation. Moreover, it has been suggested that the expression of CD39 ectonucleotidase endows Th17 cells with immunosuppressive properties. However, the exact role of CD39 ectonucleotidase in Th17 cells has not been studied in the context of intestinal inflammation. Here we show that Th17 cells expressing CD39 ectonucleotidase can hydrolyze ATP and survive to ATP-induced cell death. Moreover, in vitro-generated Th17 cells expressing the CD39 ectonucleotidase produce IL-10 and are less pathogenic than CD39 negative Th17 cells in a model of experimental colitis in Rag-/- mice. Remarkably, we show that CD39 activity regulates the conversion of Th17 cells to IL-10-producing cells in vitro, which is abrogated in the presence of ATP and the CD39-specific inhibitor ARL67156. All these data suggest that CD39 expression by Th17 cells allows the depletion of ATP and is crucial for IL-10 production and survival during the resolution of intestinal inflammation.
  • Cargando...
    Miniatura
    Ítem
    The histone demethylase inhibitor GSK-J4 limits inflammation through the induction of a tolerogenic phenotype on DCs
    (Academic Press, 2016-12) Doñas, Cristian; Carrasco, Macarena; Fritz, Macarena; Prado, Carolina; Tejón, Gabriela; Osorio-Barrios, Francisco; Manríquez, Valeria; Reyes, Paz; Pacheco, Rodrigo; Bono, María Rosa; Loyola, Alejandra; Rosemblatt, Mario
    As it has been established that demethylation of lysine 27 of histone H3 by the lysine-specific deme thylase JMJD3 increases immune responses and thus elicits inflammation, we hypothesize that inhibition of JMJD3 may attenuate autoimmune disorders. We found that in vivo administration of GSK-J4, a selective inhibitor of JMJD3 and UTX, ameliorates the severity of experimental autoimmune encephalomyelitis (EAE). In vitro experiments revealed that the anti-inflammatory effect of GSK-J4 was exerted through an effect on dendritic cells (DCs), promoting a tolerogenic profile characterized by reduced expression of costimulatory molecules CD80/CD86, an increased expression of tolerogenic molecules CD103 and TGF-b1, and reduced secretion of proin flammatory cytokines IL-6, IFN-g, and TNF. Adoptive transfer of GSK-J4-treated DCs into EAE mice reduced the clinical manifestation of the disease and decreased the extent of inflammatory CD4þ T cells infiltrating the central nervous system. Notably, Treg generation, stability, and suppressive activity were all exacerbated by GSK-J4-treated DCs without affecting Th1 and Th17 cell production. Our data show that GSK-J4-mediated modulation of inflammation is achieved by a direct effect on DCs and that systemic treatment with GSK-J4 or adoptive transfer of GSK-J4-treated DCs ex vivo may be promising approaches for the treatment of inflammatory and autoimmune disorders. © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  • Cargando...
    Miniatura
    Ítem
    Vitamin A Impairs the Reprogramming of Tregs into IL-17-Producing Cells during Intestinal Inflammation
    (Hindawi Publishing Corporation, 2015) Tejón, Gabriela; Manríquez, Valeria; De Calisto, Jaime; Flores-Santibáñez, Felipe; Hidalgo, Yessia; Crisóstomo, Natalia; Fernández, Dominique; Sauma, Daniela; Mora, J. Rodrigo; Bono, Mariá R.; Rosemblatt, Mario
    Maintaining the identity of Foxp3+ regulatory T cells (Tregs) is critical for controlling immune responses in the gut, where an imbalance between Tregs and T effector cells has been linked to inflammatory bowel disease. Accumulating evidence suggests that Tregs can convert into Th17 cells and acquire an inflammatory phenotype. In this study, we used an adoptive transfer model of Ag-specific T cells to study the contribution of different factors to the reprogramming of in vitro-generated Treg cells (iTreg) into IL-17-producing cells in a mouse model of gut inflammation in vivo. Our results show that intestinal inflammation induces the reprogramming of iTreg cells into IL-17-producing cells and that vitamin A restrains reprogramming in the gut. We also demonstrate that the presence of IL-2 during the in vitro generation of iTreg cells confers resistance to Th17 conversion but that IL-2 and retinoic acid (RA) cooperate to maintain Foxp3 expression following stimulation under Th17-polarizing conditions. Additionally, although IL-2 and RA differentially regulate the expression of different Treg cell suppressive markers, Treg cells generated under different polarizing conditions present similar suppressive capacity. © 2015 Gabriela Tejón et al.