Examinando por Autor "Udalski, A."
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem A gravitationally lensed quasar discovered in OGLE(Oxford University Press, 2018-05) Kostrzewa-Rutkowska, Z.; Kozlowski, S.; Lemon, C.; Anguita, T.; Greiner, J.; Auger, M.W.; Wyrzykowski, L.; Apostolovski, Y.; Bolmer, J.; Udalski, A.; Szymański, M.K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.We report the discovery of a new gravitationally lensed quasar (double) from the Optical Gravitational Lensing Experiment (OGLE) identified inside the ~670deg2 area encompassing the Magellanic Clouds. The source was selected as one of ~60 'red W1-W2' mid-infrared objects from WISE and having a significant amount of variability in OGLE for both two (or more) nearby sources. This is the first detection of a gravitational lens, where the discovery is made 'the other way around', meaning we first measured the time delay between the two lensed quasar images of -132 < tAB < -76 d (90 per cent CL), with the median tAB ~-102 d (in the observer frame), and where the fainter image B lags image A. The system consists of the two quasar images separated by 1.5 arcsec on the sky, with I ~20.0mag and I ~19.6mag, respectively, and a lensing galaxy that becomes detectable as I ~21.5 mag source, 1.0 arcsec from image A, after subtracting the two lensed images. Both quasar images show clear AGN broad emission lines at z=2.16 in the New Technology Telescope spectra. The spectral energy distribution (SED) fitting with the fixed source redshift provided the estimate of the lensing galaxy redshift of z ~0.9 ± 0.2 (90 per cent CL), while its type is more likely to be elliptical (the SED-inferred and lens-model stellar mass is more likely present in ellipticals) than spiral (preferred redshift by the lens model). © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.Ítem Photometric and spectroscopic evolution of the interacting transient at 2016jbu(Gaia16cfr)(Oxford University Press, 2022-07-01) Brennan, S.J.; Fraser, M.; Johansson, J.; Pastorello, A.; Kotak, R.; Stevance, H.F.; Chen, T.-W.; Eldridge, J.J.; Bose, S.; Brown, P.J.; Callis, E.; Cartier, R.; Dennefeld, M.; Dong, Subo; Duffy, P.; Elias Rosa, N.; Hosseinzadeh, G.; Hsiao, E.; Kuncarayakti, H.; Martin Carrillo, A.; Monard, B.; Nyholm, A.; Pignata, G.; Sand, D.; Shappee, B.J.; Smartt, S.J.; Tucker, B.E.; Wyrzykowski, L.; Abbot, H.; Benetti, S.; Bento, J.; Blondin, S.; Chen, Ping; Delgado, A.; Galbany, L.; Gromadzki, M.; Gutierrez, C.P.; Hanlon, L.; Harrison, D.L.; Hiramatsu, D.; Hodgkin, S.T.; Holoien, T.W.-S.; Howell, D.A.; Inserra, C.; Kankare, E.; Kozłowski, S.; Müller Bravo, T.E.; Maguire, K.; McCully, C.; Meintjes, P.; Morrell, N.; Nicholl, M.; O'Neill, D.; Pietrukowicz, P.; Poleski, R.; Prieto, J.L.; Rau, A.; Reichart, D.E.; Schweyer, T.; Shahbandeh, M.; Skowron, J.; Sollerman, J.; Soszyński, I.; Stritzinger, M.D.; Szymański, M.; Tartaglia, L.; Udalski, A.; Ulaczyk, K.; Young, D.R.; Van Leeuwen, M.; Van Soelen, B.We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼-18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s-1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s-1 seen in broad absorption from some high-velocity material. Late-time spectra (∼+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He i, and Ca ii. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Ítem Progenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr)(Oxford University Press, 2022-07-01) Brennan, S.J.; Fraser, M.; Johansson, J.; Pastorello, A.; Kotak, R.; Stevance, H.F.; Chen, T.-W.; Eldridge, J.J.; Bose, S.; Brown, P.J.; Callis, E.; Cartier, R.; Dennefeld, M.; Dong, Subo; Duffy, P.; Elias Rosa, N.; Hosseinzadeh, G.; Hsiao, E.; Kuncarayakti, H.; Martin Carrillo, A.; Monard, B.; Pignata, G.; Sand, D.; Shappee, B.J.; Smartt, S.J.; Tucker, B.E.; Wyrzykowski, L.; Abbot, H.; Benetti, S.; Bento, J.; Blondin, S.; Chen, Ping; Delgado, A.; Galbany, L.; Gromadzki, M.; Gutierrez, C.P.; Hanlon, L.; Harrison, D.L.; Hiramatsu, D.; Hodgkin, S.T.; Holoien, T.W.-S.; Howell, D.A.; Inserra, C.; Kankare, E.; Kozłowski, S.; Müller Bravo, T.E.; Maguire, K.; Mccully, C.; Meintjes, P.; Morrell, N.; Nicholl, M.; O'neill, D.; Pietrukowicz, P.; Poleski, R.; Prieto, J.L.; Rau, A.; Reichart, D.E.; Schweyer, T.; Shahbandeh, M.; Skowron, J.; Sollerman, J.; Soszyński, I.; Stritzinger, M.D.; Szymański, M.; Tartaglia, L.; Udalski, A.; Ulaczyk, K.; Young, D.R.; Van Leeuwen, M.; Van Soelen, B.We present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a ∼22-25 M⊙ yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong Hα emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of ∼22 M⊙. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity ∼650 km s-1, while the second, more energetic event ejected material at ∼4500 km s-1. Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected 56Ni mass of [removed]Ítem THE ARAUCARIA PROJECT: A STUDY OF THE CLASSICAL CEPHEID IN THE ECLIPSING BINARY SYSTEM OGLE LMC562.05.9009 IN THE LARGE MAGELLANIC CLOUD(IOP PUBLISHING, 2015-12) Gieren, W.; Pilecki, B.; Pietrzyński, G.; Graczyk, D.; Udalski, A.; Soszyński, I.; Thompson, I.B.; Moroni, P.G.P.; Smolec, R.; Konorski, P.; Górski, M.; Karczmarek, P.; Suchomska, K.; Taormina, M.; Gallenne, A.; Storm, J.; Bono, G.; Catelan, M.; Szymański, M.; Kozłowski, S.; Pietrukowicz, P.; Wyrzykowski, Ł.; Poleski, R.; Skowron, J.; Minniti, D.; Ulaczyk, K.; Mróz, P.; Pawlak, M.; Nardetto, N.We present a detailed study of the classical Cepheid in the double-lined, highly eccentric eclipsing binary system OGLE-LMC562.05.9009. The Cepheid is a fundamental mode pulsator with a period of 2.988 days. The orbital period of the system is 1550 days. Using spectroscopic data from three 4-8-m telescopes and photometry spanning 22 years, we were able to derive the dynamical masses and radii of both stars with exquisite accuracy. Both stars in the system are very similar in mass, radius, and color, but the companion is a stable, non-pulsating star. The Cepheid is slightly more massive and bigger (M-1 = 3.70 +/- 0.03 Me-circle dot R-1 = 28.6 +/- 0.2 R-circle dot) than its companion (M-2 = 3.60. +/- 0.03 M-circle dot, R-2 = 26.6 +/- 0.2 R-circle dot). Within the observational uncertainties both stars have the same effective temperature of 6030 +/- 150 K. Evolutionary tracks place both stars inside the classical Cepheid instability strip, but it is likely that future improved temperature estimates will move the stable giant companion just beyond the red edge of the instability strip. Within current observational and theoretical uncertainties, both stars fit on a 205 Myr isochrone arguing for their common age. From our model, we determine a value of the projection factor of p = 1.37 +/- 0.07 for the Cepheid in the OGLE-LMC562.05.9009 system. This is the second Cepheid for which we could measure its p-factor with high precision directly from the analysis of an eclipsing binary system, which represents an important contribution toward a better calibration of Baade-Wesselink methods of distance determination for Cepheids.