Examinando por Autor "Valdes, Jorge H."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Global transcriptome profiles provide insights into muscle cell development and differentiation on microstructured marine biopolymer scaffolds for cultured meat production(Scientific Reports, Volume 14, Issue 1 December 2024 Article number 10931, 2024-12) Bezjak, Dragica; Orellana, Nicole; Valdivia, Guillermo; Acevedo, Cristian A.; Valdes, Jorge H.Biomaterial scaffolds play a pivotal role in the advancement of cultured meat technology, facilitating essential processes like cell attachment, growth, specialization, and alignment. Currently, there exists limited knowledge concerning the creation of consumable scaffolds tailored for cultured meat applications. This investigation aimed to produce edible scaffolds featuring both smooth and patterned surfaces, utilizing biomaterials such as salmon gelatin, alginate, agarose and glycerol, pertinent to cultured meat and adhering to food safety protocols. The primary objective of this research was to uncover variations in transcriptomes profiles between flat and microstructured edible scaffolds fabricated from marine-derived biopolymers, leveraging high-throughput sequencing techniques. Expression analysis revealed noteworthy disparities in transcriptome profiles when comparing the flat and microstructured scaffold configurations against a control condition. Employing gene functional enrichment analysis for the microstructured versus flat scaffold conditions yielded substantial enrichment ratios, highlighting pertinent gene modules linked to the development of skeletal muscle. Notable functional aspects included filament sliding, muscle contraction, and the organization of sarcomeres. By shedding light on these intricate processes, this study offers insights into the fundamental mechanisms underpinning the generation of muscle-specific cultured meat. © The Author(s) 2024.Ítem Mobile genetic elements drive the multidrug resistance and spread of Salmonella serotypes along a poultry meat production line(Frontiers Media S.A., 2023-03) Krüger, Gabriel I.; Pardo-Esté, Coral; Zepeda, Phillippi; Olivares-Pacheco, Jorge; Galleguillos, Nicolas; Suarez, Marcia; Castro-Severyn, Juan; Alvarez-Thon, Luis; Tello, Mario; Valdes, Jorge H.; Saavedra, Claudia P.The presence of mobile genetic elements in Salmonella isolated from a chicken farm constitutes a potential risk for the appearance of emerging bacteria present in the food industry. These elements contribute to increased pathogenicity and antimicrobial resistance through genes that are related to the formation of biofilms and resistance genes contained in plasmids, integrons, and transposons. One hundred and thirty-three Salmonella isolates from different stages of the production line, such as feed manufacturing, hatchery, broiler farm, poultry farm, and slaughterhouse, were identified, serotyped and sequenced. The most predominant serotype was Salmonella Infantis. Phylogenetic analyses demonstrated that the diversity and spread of strains in the pipeline are serotype-independent, and that isolates belonging to the same serotype are very closely related genetically. On the other hand, Salmonella Infantis isolates carried the pESI IncFIB plasmid harboring a wide variety of resistance genes, all linked to mobile genetic elements, and among carriers of these plasmids, the antibiograms showed differences in resistance profiles and this linked to a variety in plasmid structure, similarly observed in the diversity of Salmonella Heidelberg isolates carrying the IncI1-Iα plasmid. Mobile genetic elements encoding resistance and virulence genes also contributed to the differences in gene content. Antibiotic resistance genotypes were matched closely by the resistance phenotypes, with high frequency of tetracycline, aminoglycosides, and cephalosporins resistance. In conclusion, the contamination in the poultry industry is described throughout the entire production line, with mobile genetic elements leading to multi-drug resistant bacteria, thus promoting survival when challenged with various antimicrobial compounds. Copyright © 2023 Krüger, Pardo-Esté, Zepeda, Olivares-Pacheco, Galleguillos, Suarez, Castro-Severyn, Alvarez-Thon, Tello, Valdes and Saavedra.