Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Vallejos, Alejandro"

Mostrando 1 - 6 de 6
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Endothelial fibrosis induced by suppressed STAT3 expression mediated by signaling involving the TGF-β1/ALK5/Smad pathway
    (Nature Publishing Group, 2017-09) Becerra, Alvaro; Rojas, MacArena; Vallejos, Alejandro; Villegas, Vicente; Pérez, Lorena; Cabello-Verrugio, Claudio; Simon, Felipe
    During systemic inflammatory pathologies, mediators of inflammation circulate in the bloodstream and interact with endothelial cells (ECs), resulting in endothelial dysfunction that maintains and enhances the pathological condition. Inflammatory mediators change the protein expression profile of ECs, which become activated fibroblasts via endothelial-to-mesenchymal transition. This process is characterized by downregulated endothelial proteins and strongly upregulated fibrotic-specific genes and extracellular matrix-forming proteins. The main inductor of endothelial fibrosis is transforming growth factor-β1 (TGF-β1), which acts through the TGF-β1/activin receptor-like kinase 5 (ALK5)/Smads intracellular signaling pathway. The signal transducer and activator of transcription 3 (STAT3) is also involved in fibrosis in several tissues (e.g. heart and vascular system), where STAT3 signaling decreases TGF-β1-induced responses by directly interacting with Smad proteins, suggesting that decreased STAT3 could induce TGF-β1-mediated fibrosis. However, it is unknown if suppressed STAT3 expression induces EC fibrosis through a mechanism involving the TGF-β signaling pathway. The present study evaluated the fibrotic actions of STAT3 suppression in ECs and investigated TGF-β1/ALK5/Smad4 signaling pathway participation. Suppressed STAT3 expression stimulated fibrotic conversion in ECs, as mediated by protein expression reprograming that decreased endothelial marker expression and increased fibrotic and extracellular matrix protein levels. The potential mechanism underlying these changes was dependent on TGF-β1 secretion, the ALK5 activation pathway, and Smad4 translocation into the nucleus. We conclude that suppressed STAT3 expression converts ECs into activated fibroblasts via TGF-β1/ALK5/Smad4 signaling pathway involvement. © 2017 USCAP, Inc.
  • No hay miniatura disponible
    Ítem
    OxHDL controls LOX-1 expression and plasma membrane localization through a mechanism dependent on NOX/ROS/NF-κB pathway on endothelial cells
    (Nature Publishing Group, 2019-03-01) Pérez, Lorena; Vallejos, Alejandro; Echeverria, Cesar; Varela, Diego; Cabello-Verrugio, Claudio; Simon, Felipe
    Systemic inflammatory diseases enhance circulating oxidative stress levels, which results in the oxidation of circulating high-density lipoprotein (oxHDL). Endothelial cell function can be negatively impacted by oxHDL, but the underlying mechanisms for this remain unclear. Some reports indicate that the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is also a receptor for oxHDL. However, it is unknown if oxHDL induces increased LOX-1 expression at the plasma membrane, as an event that supports endothelial dysfunction. Therefore, the aims of this study were to determine if oxHDL induces plasma-membrane level changes in LOX-1 and, if so, to describe the underlying mechanisms in endothelial cells. Our results demonstrate that the incubation of arterial or vein endothelial cells with oxHDL (and not HDL) induces the increase of LOX-1 expression at the plasma membrane; effect prevented by LOX-1 inhibition. Importantly, same results were observed in endothelial cells from oxHDL-treated rats. Furthermore, the observed oxHDL-induced LOX-1 expression is abolished by the down-regulation of NOX-2 expression with siRNA (and no others NOX isoforms), by the pharmacological inhibition of NAD(P)H oxidase (with DPI or apocynin) or by the inhibition of NF-κB transcription factor. Coherently, LOX-1 expression is augmented by the incubation of endothelial cells with H2O2 or GSSG even in absence of oxHDL, indicating that the NOX-2/ROS/ NF-κB axis is involved. Interestingly, oxHDL incubation also increases TNF-α expression, cytokine that induces LOX-1 expression. Thus, our results suggest a positive feedback mechanism for LOX-1 receptor during inflammatory condition where an oxidative burst will generate oxHDL from native HDL, activating LOX-1 receptor which in turn will increase the expression of NOX-2, TNF-α and LOX-1 receptor at the plasma membrane. In conclusion, oxHDL-induced translocation of LOX-1 to the plasma membrane could constitute an induction mechanism of endothelial dysfunction in systemic inflammatory diseases.
  • Cargando...
    Miniatura
    Ítem
    OxHDL controls LOX-1 expression and plasma membrane localization through a mechanism dependent on NOX/ROS/NF-κB pathway on endothelial cells
    (Nature Publishing Group, 2019-03) Pérez, Lorena; Vallejos, Alejandro; Echeverria, Cesar; Varela, Diego; Cabello-Verrugio, Claudio; Simon, Felipe
    Systemic inflammatory diseases enhance circulating oxidative stress levels, which results in the oxidation of circulating high-density lipoprotein (oxHDL). Endothelial cell function can be negatively impacted by oxHDL, but the underlying mechanisms for this remain unclear. Some reports indicate that the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is also a receptor for oxHDL. However, it is unknown if oxHDL induces increased LOX-1 expression at the plasma membrane, as an event that supports endothelial dysfunction. Therefore, the aims of this study were to determine if oxHDL induces plasma-membrane level changes in LOX-1 and, if so, to describe the underlying mechanisms in endothelial cells. Our results demonstrate that the incubation of arterial or vein endothelial cells with oxHDL (and not HDL) induces the increase of LOX-1 expression at the plasma membrane; effect prevented by LOX-1 inhibition. Importantly, same results were observed in endothelial cells from oxHDL-treated rats. Furthermore, the observed oxHDL-induced LOX-1 expression is abolished by the down-regulation of NOX-2 expression with siRNA (and no others NOX isoforms), by the pharmacological inhibition of NAD(P)H oxidase (with DPI or apocynin) or by the inhibition of NF-κB transcription factor. Coherently, LOX-1 expression is augmented by the incubation of endothelial cells with H2O2 or GSSG even in absence of oxHDL, indicating that the NOX-2/ROS/ NF-κB axis is involved. Interestingly, oxHDL incubation also increases TNF-α expression, cytokine that induces LOX-1 expression. Thus, our results suggest a positive feedback mechanism for LOX-1 receptor during inflammatory condition where an oxidative burst will generate oxHDL from native HDL, activating LOX-1 receptor which in turn will increase the expression of NOX-2, TNF-α and LOX-1 receptor at the plasma membrane. In conclusion, oxHDL-induced translocation of LOX-1 to the plasma membrane could constitute an induction mechanism of endothelial dysfunction in systemic inflammatory diseases. © 2019, United States & Canadian Academy of Pathology.
  • Cargando...
    Miniatura
    Ítem
    Preventive Leptin Administration Protects Against Sepsis Through Improving Hypotension, Tachycardia, Oxidative Stress Burst, Multiple Organ Dysfunction, and Increasing Survival
    (Frontiers Media S.A., 2018-12) Vallejos, Alejandro; Olivares, Pedro; Varela, Diego; Echeverria, Cesar; Cabello Verrugio, Claudio; Pérez Leighton, Claudio; Simon, Felipe
    Sepsis syndrome is the most important cause of mortality in critically ill patients admitted to intensive care units (ICUs). However, current therapies for its prevention and treatment are still unsatisfactory, and the mortality rate is still high. Non-septic ICU patients are vulnerable to acquire sepsis syndrome. Thus, a preventive treatment for this population is needed. During sepsis syndrome and endotoxemia, severe hypotension, tachycardia, oxidative and immune response increase, multiple organ dysfunction syndrome (MODS) and decreased survival are observed. Leptin administration protects against negative effects of sepsis syndrome and endotoxemia. Furthermore, it is has been reported that leptin elevates blood pressure mediated by sympathetic nervous system activation. However, whether leptin administration before sepsis induction mediates its protective effects during sepsis through blood pressure regulation is not known. Therefore, we investigated whether pre-treatment of leptin improves blood pressure and MODS, resulting in survival increase during endotoxemia. The results showed that leptin administration before endotoxemia induction reduced both the hypotension and tachycardia characteristically observed during endotoxemia. Notably, this protective effect was observed early and late in the course of endotoxemia. Endotoxemia-induced MODS decreased in leptin-treated rats, which was reflected in normal values for liver and kidney function, inhibition of muscle mass wasting and maintenance of glycemia. Furthermore, leptin pre-treatment decreased the oxidative stress burst in blood and blunted the increased pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 observed during endotoxemia. Remarkably, according to the leptin-induced increase in survival, leptin pre-administration decreased the risk for death associated with sepsis syndrome at early and late times after endotoxemia induction. These results show a potential preventive therapy against sepsis syndrome and endotoxemia in vulnerable patients, based in the beneficial actions of leptin. © Copyright © 2018 Vallejos, Olivares, Varela, Echeverria, Cabello-Verrugio, Pérez-Leighton and Simon.
  • Cargando...
    Miniatura
    Ítem
    TRPM7 mediates kidney injury, endothelial hyperpermeability and mortality during endotoxemia
    (Springer Nature, 2020-02) Gatica, Sebastian; Villegas, Vicente; Vallejos, Alejandro; Olivares, Pedro; Aballai, Víctor; Lagos-Meza, Felipe; Echeverria, Cesar; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe
    epsis is the main cause of mortality in patients admitted to intensive care units. During sepsis, endothelial permeability is severely augmented, contributing to renal dysfunction and patient mortality. Ca2+ influx and the subsequent increase in intracellular [Ca2+]i in endothelial cells (ECs) are key steps in the establishment of endothelial hyperpermeability. Transient receptor potential melastatin 7 (TRPM7) ion channels are permeable to Ca2+ and are expressed in a broad range of cell types and tissues, including ECs and kidneys. However, the role of TRPM7 on endothelial hyperpermeability during sepsis has remained elusive. Therefore, we investigated the participation of TRPM7 in renal vascular hyperpermeability, renal dysfunction, and enhanced mortality induced by endotoxemia. Our results showed that endotoxin increases endothelial hyperpermeability and Ca2+ overload through the TLR4/NOX-2/ROS/NF-κB pathway. Moreover, endotoxin exposure was shown to downregulate the expression of VE-cadherin, compromising monolayer integrity and enhancing vascular hyperpermeability. Notably, endotoxin-induced endothelial hyperpermeability was substantially inhibited by pharmacological inhibition and specific suppression of TRPM7 expression. The endotoxin was shown to upregulate the expression of TRPM7 via the TLR4/NOX-2/ROS/NF-κB pathway and induce a TRPM7-dependent EC Ca2+ overload. Remarkably, in vivo experiments performed in endotoxemic animals showed that pharmacological inhibition and specific suppression of TRPM7 expression inhibits renal vascular hyperpermeability, prevents kidney dysfunction, and improves survival in endotoxemic animals. Therefore, our results showed that TRPM7 mediates endotoxemia-induced endothelial hyperpermeability, renal dysfunction, and enhanced mortality, revealing a novel molecular target for treating renal vascular hyperpermeability and kidney dysfunction during endotoxemia, sepsis, and other inflammatory diseases. © 2019, United States & Canadian Academy of Pathology.
  • Cargando...
    Miniatura
    Ítem
    TRPM7 mediates kidney injury, endothelial hyperpermeability and mortality during endotoxemia
    (Springer Nature, 2020-02) Gatica, Sebastian; Villegas, Vicente; Vallejos, Alejandro; Olivares, Pedro; Aballai, Víctor; Lagos-Meza, Felipe; Echeverria, Cesar; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe
    Sepsis is the main cause of mortality in patients admitted to intensive care units. During sepsis, endothelial permeability is severely augmented, contributing to renal dysfunction and patient mortality. Ca2+ influx and the subsequent increase in intracellular [Ca2+]i in endothelial cells (ECs) are key steps in the establishment of endothelial hyperpermeability. Transient receptor potential melastatin 7 (TRPM7) ion channels are permeable to Ca2+ and are expressed in a broad range of cell types and tissues, including ECs and kidneys. However, the role of TRPM7 on endothelial hyperpermeability during sepsis has remained elusive. Therefore, we investigated the participation of TRPM7 in renal vascular hyperpermeability, renal dysfunction, and enhanced mortality induced by endotoxemia. Our results showed that endotoxin increases endothelial hyperpermeability and Ca2+ overload through the TLR4/NOX-2/ROS/NF-κB pathway. Moreover, endotoxin exposure was shown to downregulate the expression of VE-cadherin, compromising monolayer integrity and enhancing vascular hyperpermeability. Notably, endotoxin-induced endothelial hyperpermeability was substantially inhibited by pharmacological inhibition and specific suppression of TRPM7 expression. The endotoxin was shown to upregulate the expression of TRPM7 via the TLR4/NOX-2/ROS/NF-κB pathway and induce a TRPM7-dependent EC Ca2+ overload. Remarkably, in vivo experiments performed in endotoxemic animals showed that pharmacological inhibition and specific suppression of TRPM7 expression inhibits renal vascular hyperpermeability, prevents kidney dysfunction, and improves survival in endotoxemic animals. Therefore, our results showed that TRPM7 mediates endotoxemia-induced endothelial hyperpermeability, renal dysfunction, and enhanced mortality, revealing a novel molecular target for treating renal vascular hyperpermeability and kidney dysfunction during endotoxemia, sepsis, and other inflammatory diseases. © 2019, United States & Canadian Academy of Pathology.