Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Verheijen, Marc"

Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Looking at the Distant Universe with the MeerKAT Array: The H i Mass Function in the Local Universe
    (Institute of Physics, 2025-03) Kazemi-Moridani, Amir; Baker, Andrew J.; Verheijen, Marc; Gawiser, Eric; Blyth, Sarah-Louise; Obreschkow, Danail; Chemin, Laurent; Collier, Jordan D.; Cook, Kyle W.; Delhaize, Jacinta; Elson, Ed; Frank, Bradley S.; Glowacki, Marcin; Hess, Kelley M.; Holwerda, Benne W.; Hutchens, Zackary L.; Jarvis, Matt J.; Kaasinen, Melanie; Makhathini, Sphesihle; Mohapatra, Abhisek; Pan, Hengxing; Schröder, Anja C.; Stockenstroom, Leyya; Vaccari, Mattia; Westmeier, Tobias; Wu, John F.; Zwaan, Martin
    We present measurements of the neutral atomic hydrogen (H i) mass function (HiMF) and cosmic H i density (ΩH I) at 0 ≤ z ≤ 0.088 from the Looking at the Distant Universe with MeerKAT Array (LADUMA) survey. Using LADUMA Data Release 1 (DR1), we analyze the HiMF via a new “recovery matrix” method that we benchmark against a more traditional modified maximum likelihood (MML) method. Our analysis, which implements a forward modeling approach, corrects for survey incompleteness and uses extensive synthetic source injections to ensure robust estimates of the HiMF parameters and their associated uncertainties. This new method tracks the recovery of sources in mass bins different from those in which they were injected and incorporates a Poisson likelihood in the forward modeling process, allowing it to correctly handle uncertainties in bins with few or no detections. The application of our analysis to a high-purity subsample of the LADUMA DR1 spectral line catalog in turn mitigates any possible biases that could result from the inconsistent treatment of synthetic and real sources. For the surveyed redshift range, the recovered Schechter function normalization, low-mass slope, and “knee” mass are ϕ * = 3.5 6 − 1.92 + 0.97 × 1 0 − 3 Mpc−3 dex−1, α = − 1.1 8 − 0.19 + 0.08 , and log ( M * / M ⊙ ) = 10.0 1 − 0.12 + 0.31 , respectively, which together imply a comoving cosmic H i density of Ω H I = 3.0 9 − 0.47 + 0.65 × 1 0 − 4 . Our results show consistency between recovery matrix and MML methods and with previous low-redshift studies, giving confidence that the cosmic volume probed by LADUMA, even at low redshifts, is not an outlier in terms of its H i content. © 2025. The Author(s). Published by the American Astronomical Society.
  • No hay miniatura disponible
    Ítem
    Looking at the Distant Universe with the MeerKAT Array: The H i Mass Function in the Local Universe
    (Institute of Physics, 0025) Kazemi-Moridani, Amir; Baker, Andrew J; Verheijen, Marc; Gawiser, Eric; Blyth, Sarah-Louise; Obreschkow, Danail; Chemin, Laurent f; Collier, Jordan D.; Cook, Kyle W.; Delhaize, Jacinta; Elson, Ed; Frank, Bradley S.
    We present measurements of the neutral atomic hydrogen (H i) mass function (HiMF) and cosmic H i density (ΩH I) at 0 ≤ z ≤ 0.088 from the Looking at the Distant Universe with MeerKAT Array (LADUMA) survey. Using LADUMA Data Release 1 (DR1), we analyze the HiMF via a new “recovery matrix” method that we benchmark against a more traditional modified maximum likelihood (MML) method. Our analysis, which implements a forward modeling approach, corrects for survey incompleteness and uses extensive synthetic source injections to ensure robust estimates of the HiMF parameters and their associated uncertainties. This new method tracks the recovery of sources in mass bins different from those in which they were injected and incorporates a Poisson likelihood in the forward modeling process, allowing it to correctly handle uncertainties in bins with few or no detections. The application of our analysis to a high-purity subsample of the LADUMA DR1 spectral line catalog in turn mitigates any possible biases that could result from the inconsistent treatment of synthetic and real sources. For the surveyed redshift range, the recovered Schechter function normalization, low-mass slope, and “knee” mass are ϕ * = 3.5 6 − 1.92 + 0.97 × 1 0 − 3 Mpc−3 dex−1, α = − 1.1 8 − 0.19 + 0.08 , and log ( M * / M ⊙ ) = 10.0 1 − 0.12 + 0.31 , respectively, which together imply a comoving cosmic H i density of Ω H I = 3.0 9 − 0.47 + 0.65 × 1 0 − 4 . Our results show consistency between recovery matrix and MML methods and with previous low-redshift studies, giving confidence that the cosmic volume probed by LADUMA, even at low redshifts, is not an outlier in terms of its H i content. © 2025. The Author(s). Published by the American Astronomical Society.
  • No hay miniatura disponible
    Ítem
    Looking at the Distant Universe with the MeerKAT Array: The H i Mass Function in the Local Universe
    (Institute of Physics, 0025-03) Kazemi-Moridani, Amir; Baker, Andrew J.; Verheijen, Marc; Gawiser, Eric; Blyth, Sarah-Louise; Obreschkow, Danail; Chemin, Laurent; Collier, Jordan D.; Cook, Kyle W; Delhaize, Jacinta; Elson, Ed; Frank, Bradley S.
    We present measurements of the neutral atomic hydrogen (H i) mass function (HiMF) and cosmic H i density (ΩH I) at 0 ≤ z ≤ 0.088 from the Looking at the Distant Universe with MeerKAT Array (LADUMA) survey. Using LADUMA Data Release 1 (DR1), we analyze the HiMF via a new “recovery matrix” method that we benchmark against a more traditional modified maximum likelihood (MML) method. Our analysis, which implements a forward modeling approach, corrects for survey incompleteness and uses extensive synthetic source injections to ensure robust estimates of the HiMF parameters and their associated uncertainties. This new method tracks the recovery of sources in mass bins different from those in which they were injected and incorporates a Poisson likelihood in the forward modeling process, allowing it to correctly handle uncertainties in bins with few or no detections. The application of our analysis to a high-purity subsample of the LADUMA DR1 spectral line catalog in turn mitigates any possible biases that could result from the inconsistent treatment of synthetic and real sources. For the surveyed redshift range, the recovered Schechter function normalization, low-mass slope, and “knee” mass are ϕ * = 3.5 6 − 1.92 + 0.97 × 1 0 − 3 Mpc−3 dex−1, α = − 1.1 8 − 0.19 + 0.08 , and log ( M * / M ⊙ ) = 10.0 1 − 0.12 + 0.31 , respectively, which together imply a comoving cosmic H i density of Ω H I = 3.0 9 − 0.47 + 0.65 × 1 0 − 4 . Our results show consistency between recovery matrix and MML methods and with previous low-redshift studies, giving confidence that the cosmic volume probed by LADUMA, even at low redshifts, is not an outlier in terms of its H i content. © 2025. The Author(s). Published by the American Astronomical Society.