Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Young, H."

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Model-Free Predictive Current Control of a Voltage Source Inverter
    (Institute of Electrical and Electronics Engineers, 2020-11) Rodriguez, J.; Heydari, R.; Rafiee, Z.; Young, H.; Flores-Bahamonde, F.; Shahparasti, M.
    Conventional model predictive control (MPC) of power converter has been widely applied to power inverters achieving high performance, fast dynamic response, and accurate transient control of power converter. However, the MPC strategy is highly reliant on the accuracy of the inverter model used for the controlled system. Consequently, a parameter or model mismatch between the plant and the controller leads to a sub-optimal performance of MPC. In this paper, a new strategy called model-free predictive control (MF-PC) is proposed to improve such problems. The presented approach is based on a recursive least squares algorithm to identify the parameters of an auto-regressive with exogenous input (ARX) model. The proposed method provides an accurate prediction of the controlled variables without requiring detailed knowledge of the physical system. This new approach and is realized by employing a novel state space identification algorithm into the predictive control structure. The performance of the proposed model-free predictive control method is compared with conventional MPC. The simulation and experimental results show that the proposed method is totally robust against parameters and model changes compared with the conventional model based solutions.
  • Cargando...
    Miniatura
    Ítem
    Simple Finite-Control-Set Model Predictive Control of Grid-Forming Inverters with LCL Filters
    (Institute of Electrical and Electronics Engineers Inc., 2020) Young, H.; Marin, V.; Pesce, C.; Rodriguez, J.
    Grid-forming inverters (GFI) play an important role as power interfaces for distributed generation units in islanded microgrids, where inductive-capacitive-inductive (LCL) output filters are commonly employed to mitigate the harmonics injected by voltage-source inverters. Due to advantages such as fast dynamic response and straightforward handling of constraints, Finite-control-set model predictive control (FCS-MPC) has become an attractive option for voltage control in GFI systems. However, conventional FCS-MPC algorithms with short prediction horizon have performance limitations in the tracking of ac references in systems with high-order dynamics, such as LCL-filtered GFIs. On the other hand, predictive algorithms with extended prediction horizons suffer from an increased computational burden. This paper proposes a new FCS-MPC algorithm to accurately control the capacitor voltage in an LCL-filtered GFI, using a discrete-time prediction model to dynamically compute the reference for a FCS-MPC inverter-side current controller. The main advantages of the proposed method are its simple implementation without requiring the tuning of weighting factors in its cost function; and its short prediction horizon, which maintains a reduced computational cost. Moreover, active resonance damping elements such as digital filters or ad hoc feedback loops to deal with the LCL filter resonance are not required. Simulation tests and experimental results in a laboratory-scale setup confirm the effectiveness of the proposed control algorithm, yielding lower distortion of output voltage waveforms and increased robustness to modeling errors compared with the conventional FCS-MPC approach.