Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Zhang, Jianwei"

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Predictive Voltage Control of Direct Matrix Converters with Improved Output Voltage for Renewable Distributed Generation
    (Institute of Electrical and Electronics Engineers Inc., 2019-03) Zhang, Jianwei; Li, Lia; Dorrell, David G.; Norambuena, Margarita; Rodriguez, Jose
    This paper proposes a predictive voltage control strategy for a direct matrix converter used in a renewable energy distributed generation (DG) system. A direct matrix converter with LC filters is controlled in order to work as a stable voltage supply for loads. This is especially relevant for the stand-alone operation of a renewable DG where a stable sinusoidal voltage, with desired amplitude and frequency under various load conditions, is the main control objective. The model predictive control is employed to regulate the matrix converter so that it produces stable sinusoidal voltages for different loads. With predictive control, many other control objectives, e.g., input power factor, common-mode voltage, and switching frequency, can be achieved depending on the application. To reduce the number of required measurements and sensors, this paper utilizes observers and makes the use of the switch matrices. In addition, the voltage transfer ratio can be improved with the proposed strategy. The controller is tested under various conditions including intermittent disturbance, nonlinear loads, and unbalanced loads. The proposed controller is effective, simple, and easy to implement. The simulation and experimental results verify the effectiveness of the proposed scheme and control strategy. This proposed scheme can be potentially used in microgrid applications. © 2013 IEEE.
  • Cargando...
    Miniatura
    Ítem
    Sequential model predictive control of three-phase direct matrix converter
    (2019-01) Zhang, Jianwei; Norambuena, Margarita; Li, Li; Dorrell, David; Rodriguez, Jose
    The matrix converter (MC) is a promising converter that performs the direct AC-to-AC conversion. Model predictive control (MPC) is a simple and powerful tool for power electronic converters, including the MC. However, weighting factor design and heavy computational burden impose significant challenges for this control strategy. This paper investigates the generalized sequential MPC (SMPC) for a three-phase direct MC. In this control strategy, each control objective has an individual cost function and these cost functions are evaluated sequentially based on priority. The complex weighting factor design process is not required. Compared with the standard MPC, the computation burden is reduced because only the pre-selected switch states are evaluated in the second and subsequent sequential cost functions. In addition, the prediction model computation for the following cost functions is also reduced. Specifying the priority for control objectives can be achieved. A comparative study with traditional MPC is carried out both in simulation and an experiment. Comparable control performance to the traditional MPC is achieved. This controller is suitable for the MC because of the reduced computational burden. Simulation and experimental results verify the effectiveness of the proposed strategy. © 2019 by the authors.