Recognition and conversion of electric field representations: The case of electric field lines
No hay miniatura disponible
Archivos
Fecha
2023-07
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
American Physical Society
Nombre de Curso
Licencia CC
CC BY 4.0 Attribution 4.0 International Deed
Licencia CC
https://creativecommons.org/licenses/by/4.0/
Resumen
We conducted a study with introductory and upper-division physics students in a Mexican university to learn how students independently recognize the electric field’s main characteristics in the electric field lines diagram and as a source or target representation in conversion processes. We used the theory of registers of semiotic representations and a phenomenographic approach as a framework to analyze data. The recognition and conversion abilities were explored through interpretation and construction tasks. We identified students’ main difficulties in recognition and conversion in the interpretation and construction tasks. In conversion processes, we found that when the electric field lines diagram is the source representation, students do not interpret the field lines’ density as the magnitude of the electric field. The difficulties of interpretation that arise in these conversion processes depend partially on the target representation. We also found that constructing electric field lines is especially difficult for students at both introductory and upper-division levels. Most students would prefer to draw vector field plots instead. We recommend that electricity and magnetism teachers and researchers be aware of the difficulties that the recognition and conversion in interpretation and construction tasks may represent for their students in understanding the electric field concept. © Published by the American Physical Society.
Notas
Indexación: Scopus
Palabras clave
Electric Field, Case of Electric Field Lines, Study with Introductory, Conversion, Recognition
Citación
Physical Review Physics Education Research. Volume 19, Issue 2. July 2023. Article number 020117
DOI
10.1103/PhysRevPhysEducRes.19.020117