Osteoconductive Effect of a Nanocomposite Membrane Treated with UV Radiation
Cargando...
Archivos
Fecha
2022-01
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
MDPI
Nombre de Curso
Licencia CC
Licencia CC
Resumen
Modulation of the bio-regenerative characteristics of materials is an indispensable re-quirement in tissue engineering. Particularly, in bone tissue engineering, the promotion of the osteoconductive phenomenon determines the elemental property of a material be used therapeuti-cally. In addition to the chemical qualities of the constituent materials, the three-dimensional surface structure plays a fundamental role that various methods are expected to modulate in a number of ways, one most promising of which is the use of different types of radiation. In the present manuscript, we demonstrate in a calvarial defect model, that treatment with ultraviolet irradiation allows modification of the osteoconductive characteristics in a biomaterial formed by gelatin and chitosan, together with the inclusion of hydroxyapatite and titanium oxide nanoparticles. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Notas
Palabras clave
Biomaterials; Bone regeneration; Calvarial defect; Uv-treatment
Citación
Polymers Open Access Volume 14, Issue 2January-2 2022 Article number 289