Procedimiento de agrupación de estudiantes según riesgo de abandono para mejorar la gestión estudiantil en educación superior

dc.contributor.authorHinojosa, Mauricio
dc.contributor.authorDerpich, Iván
dc.contributor.authorAlfaro, Miguel
dc.contributor.authorRuete, David
dc.contributor.authorCaroca, Alejandro
dc.contributor.authorGatica, Gustavo
dc.date.accessioned2024-11-18T14:42:22Z
dc.date.available2024-11-18T14:42:22Z
dc.date.issued2022
dc.descriptionIndexación: Scopus.
dc.description.abstractThe complex problem of student dropout represents an opportunity for the application of data mining technology and methods in higher education. The objective of this research is to obtain the profile of students at risk of dropping out and thus generate student management plans that impact on the variables that explain this situation. For this, it is proposed to use a CRISP-DM methodological structure, applying statistical tools and unsupervised machine learning. The cross-sectional analysis was carried out on a universe of freshmen day students at a private Chilean university. The sociodemographic and behavioural variables used were based on attrition theory and expert judgment, and the data were obtained from the historical records available at the Institution. To obtain the variables that most influenced dropout, correlation and principal component analyses were performed. The application of agglomerative hierarchical clustering and rough sets technique produced four profiles of students with their respective association rules and five academic variables that allowed the design of a support system to reduce dropout and promote retention. © 2022 Universidade Federal de Minas Gerais. All rights reserved.
dc.description.urihttps://periodicos.ufmg.br/index.php/textolivre/article/view/37275
dc.identifier.citationTexto Livre, Volume 15, 2022 Article number e37275
dc.identifier.doi10.35699/1983-3652.2022.37275
dc.identifier.issn1983-3652
dc.identifier.urihttps://repositorio.unab.cl/handle/ria/62038
dc.language.isoes
dc.publisherLundiana
dc.rights.licenseAttribution 4.0 International CC BY 4.0 Deed
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectAgglomerative hierarchical clustering
dc.subjectCRISP-DM
dc.subjectPrincipal component analysis
dc.subjectRough sets
dc.subjectStudent dropout
dc.titleProcedimiento de agrupación de estudiantes según riesgo de abandono para mejorar la gestión estudiantil en educación superior
dc.title.alternativeStudent clustering procedure according to dropout risk to improve student management in higher education
dc.typeArtículo
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Hinojosa_Procedimiento_de_agrupación_de_estudiantes.pdf
Tamaño:
611.49 KB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN ESPAÑOL
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: