Biosynthesis of photostable CdS quantum dots by UV-resistant psychrotolerant bacteria isolated from Union Glacier, Antarctica

dc.contributor.authorVargas-Reyes, Matías
dc.contributor.authorBruna, Nicolás
dc.contributor.authorRamos-Zúñiga, Javiera
dc.contributor.authorValenzuela-Ibaceta, Felipe
dc.contributor.authorRivas-Álvarez, Paula
dc.contributor.authorNavarro, Claudio A.
dc.contributor.authorPérez-Donoso, José M
dc.date.accessioned2024-11-12T19:52:17Z
dc.date.available2024-11-12T19:52:17Z
dc.date.issued2024-12
dc.descriptionIndexación: Scopus.
dc.description.abstractBackground: Quantum Dots (QDs) are fluorescent nanoparticles with exceptional optical and optoelectronic properties, finding widespread utility in diverse industrial applications. Presently, chemically synthesized QDs are employed in solar cells, bioimaging, and various technological domains. However, many applications demand QDs with prolonged lifespans under conditions of high-energy radiation. Over the past decade, microbial biosynthesis of nanomaterials has emerged as a sustainable and cost-effective process. In this context, the utilization of extremophile microorganisms for synthesizing QDs with unique properties has recently been reported. Results: In this study, UV-resistant bacteria were isolated from one of the most extreme environments in Antarctica, Union Glacier at the Ellsworth Mountains. Bacterial isolates, identified through 16 S sequencing, belong to the genera Rhodococcus, Pseudarthrobacter, and Arthrobacter. Notably, Rhodococcus sp. (EXRC-4 A-4), Pseudarthrobacter sp. (RC-2-3), and Arthrobacter sp. (EH-1B-1) tolerate UV-C radiation doses ≥ 120 J/m². Isolated UV-resistant bacteria biosynthesized CdS QDs with fluorescence intensities 4 to 8 times higher than those biosynthesized by E. coli, a mesophilic organism tolerating low doses of UV radiation. Transmission electron microscopy (TEM) analysis determined QD sizes ranging from 6 to 23 nm, and Fourier-transform infrared (FTIR) analysis demonstrated the presence of biomolecules. QDs produced by UV-resistant Antarctic bacteria exhibit high photostability after exposure to UV-B radiation, particularly in comparison to those biosynthesized by E. coli. Interestingly, red fluorescence-emitting QDs biosynthesized by Rhodococcus sp. (EXRC-4 A-4) and Arthrobacter sp. (EH-1B-1) increased their fluorescence emission after irradiation. Analysis of methylene blue degradation after exposure to irradiated QDs biosynthesized by UV-resistant bacteria, indicates that the QDs transfer their electrons to O2 for the formation of reactive oxygen species (ROS) at different levels. Conclusions: UV-resistant Antarctic bacteria represent a novel alternative for the sustainable generation of nanostructures with increased radiation tolerance—two characteristics favoring their potential application in technologies requiring continuous exposure to high-energy radiation. Graphical abstract: (Figure presented.) © The Author(s) 2024.
dc.description.urihttps://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-024-02417-x
dc.identifier.doi10.1186/s12934-024-02417-x
dc.identifier.issn1475-2859
dc.identifier.urihttps://repositorio.unab.cl/handle/ria/61892
dc.language.isoen
dc.publisherMicrobial Cell Factories, Volume 23, Issue 1 December 2024, Article number 140
dc.rights.licenseAttribution 4.0 International CC BY 4.0 Deed
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectAntarctic Regions
dc.subjectArthrobacter
dc.subjectCadmium Compounds
dc.subjectQuantum Dots
dc.subjectRhodococcus
dc.subjectSulfides
dc.subjectUltraviolet Rays
dc.titleBiosynthesis of photostable CdS quantum dots by UV-resistant psychrotolerant bacteria isolated from Union Glacier, Antarctica
dc.typeArtículo
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
s12934-024-02417-x.pdf
Tamaño:
4.61 MB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN INGLÉS
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: