Differential expression of two bc1 complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation

No hay miniatura disponible
Fecha
2007-01
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Nombre de Curso
Licencia CC
Licencia CC
Resumen
Three strains of the strict acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans, including the type strain ATCC 23270, contain a petllABC gene cluster that encodes the three proteins, cytochrome c1, cytochrome b and a Rieske protein, that constitute a bc1, electron-transfer complex. RT-PCR and Northern blotting show that the petllABC cluster is co-transcribed with cycA, encoding a cytochrome c belonging to the c4 family, sdrA, encoding a putative short-chain dehydrogenase, and hip, encoding a high potential iron-sulfur protein, suggesting that the six genes constitute an operon, termed the petll operon. Previous results indicated that A. ferrooxidans contains a second pet operon, termed the petl operon, which contains a gene cluster that is similarly organized except that it lacks hip. Real-time PCR and Northern blot experiments demonstrate that petl is transcribed mainly in cells grown in medium containing iron, whereas petll is transcribed in cells grown in media containing sulfur or iron. Primer extension experiments revealed possible transcription initiation sites for the petl and petll operons. A model is presented in which petl is proposed to encode the bc1, complex, functioning in the uphill flow of electrons from iron to NAD(P), whereas petll is suggested to be involved in electron transfer from sulfur (or formate) to oxygen (or ferric iron). A. ferrooxidans is the only organism, to date, to exhibit two functional bc1 complexes. © 2007 SGM.
Notas
INDEXACIÓN: SCOPUS.
Palabras clave
Acidithiobacillus, Electron Transport, Electron Transport Complex III, Gene Expression Regulation, Bacterial, Genes, Bacterial, Iron, Molecular Sequence Data, Operon, Oxidation-Reduction, Sulfur
Citación
Microbiology, Volume 153, Issue 1, Pages 102 - 110, January 2007
DOI
Link a Vimeo