Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast

dc.contributor.authorJoseph, N.
dc.contributor.authorKrauskopf, E.
dc.contributor.authorVera, M.I.
dc.contributor.authorMichot, B.
dc.date.accessioned2021-05-05T20:08:34Z
dc.date.available2021-05-05T20:08:34Z
dc.date.issued1999-12
dc.descriptionIndexación: Scopus.es
dc.description.abstractMolecular mechanisms of ITS2 processing, a eukaryotic insertion between the 5.8S and LSU rRNA, remain largely elusive even in yeast. To delineate ITS2 structural and functional features which could be common to eukaryotes, we first produced phylogenetically supported folding models in the vertebrate lineage, then tested them in deeper branchings and, more particularly, among yeasts. ITS2 comparisons between four Teleostei, a Chondrichthyes specimen and two jawless organisms have revealed a common folding architecture in four to five domains of secondary structure emerging from a preserved structural core. This folding, largely reminiscent of ITS2 architecture in mammals, is also preserved in amphibia and in chicken, despite dramatic sequence variations. Preferential conservation is located around a central loop and at the apex of a long stem in the ITS2 3'-half. Interestingly, these two independent structural features contain, respectively, the 3'-ends of the two transient rRNA precursors 8S and 12S RNA identified in mammals, suggesting a preservation of these intermediates of processing over the entire vertebrate group. Surprising similarities between the vertebrate ITS2 folding shape and that of invertebrates as well as protista have made intriguing the significant differences from the yeast model. A detailed comparative analysis including four relatively close species and Schizosaccharomyces pombe, a deep yeast branching, has revealed an alternative phylogenetically supported four-domain folding presenting strong similarities to the vertebrate model. Remarkably, the two best conserved regions of vertebrates have unambiguously preserved counterparts which are also sites for internal processing in yeast. Therefore, molecular mechanisms involved in ITS2 excision in vertebrates and yeast might be more closely related than currently believed and might require a very similar trans-acting machinery.es
dc.description.urihttps://academic-oup-com.recursosbiblioteca.unab.cl/nar/article/27/23/4533/1062070
dc.identifier.citationNucleic Acids Research. Volume 27, Issue 23, 1 December 1999, Pages 4533-4540es
dc.identifier.doi10.1093/nar/27.23.4533
dc.identifier.issn0305-1048
dc.identifier.urihttp://repositorio.unab.cl/xmlui/handle/ria/18802
dc.language.isoenes
dc.publisherOxford University Presses
dc.subjectRibosome RNAes
dc.titleRibosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeastes
dc.typeArtículoes
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Joseph_Ribosomal.pdf
Tamaño:
915.9 KB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN INGLES
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: