Accident Risk Detection in Urban Trees using Machine Learning and Fuzzy Logic

dc.contributor.authorRamírez, G.
dc.contributor.authorSalazar, K.
dc.contributor.authorBarria, V.
dc.contributor.authorPinto, O.
dc.contributor.authorSan Martin, L.
dc.contributor.authorCarrasco, R.
dc.contributor.authorFuentealba, D.
dc.contributor.authorGatica, G.
dc.date.accessioned2024-09-10T17:59:04Z
dc.date.available2024-09-10T17:59:04Z
dc.date.issued2022
dc.descriptionTEXTO COMPLETO EN INGLÉS
dc.description.abstractKnowing the state of trees and their associated risks contribute to the care of the population. Machine Learning, through supervised learning, has demonstrated its effectiveness in various areas of knowledge. The risk of accidents can be predicted by having different tree data, including height, species, condition, presence of pests, the area where it is planted, climatic events, and age. This work proposes a platform to register trees and predict their risk. The solution considers integrating technology and applications for those in charge of maintenance and changes in current procedures. The risk prediction process is carried out through a fuzzification process that contributes to the responsible entities’ decision-making. Preliminary results of this research are presented, and the capacity of the developed software architecture is demonstrated, where the scalability of the prediction algorithm stands out.
dc.description.urihttps://www-sciencedirect-com.recursosbiblioteca.unab.cl/science/article/pii/S187705092200669X
dc.identifier.citationProcedia Computer Science, Volume 203 , 2022, Pages 471-475
dc.identifier.doihttps://doi.org/10.1016/j.procs.2022.07.064
dc.identifier.issn1877-0509
dc.identifier.urihttps://repositorio.unab.cl/handle/ria/60034
dc.language.isoen
dc.publisherElsevier
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 International
dc.subjectAccident Risk Detection
dc.subjectFuzzy Logic
dc.subjectMachine Learning
dc.subjectTree Accident
dc.titleAccident Risk Detection in Urban Trees using Machine Learning and Fuzzy Logic
dc.typeArtículo
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Ramirez_Accident Risk Detection in Urban Trees using Machine Learning and Fuzzy Logic.pdf
Tamaño:
677.08 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: