Relationship of Community Mobility, Vital Space, and Faller Status in Older Adults

No hay miniatura disponible
Fecha
0024-12
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Multidisciplinary Digital Publishing Institute (MDPI)
Nombre de Curso
Licencia CC
CC BY LICENSE
Licencia CC
Resumen
Community mobility, encompassing both active (e.g., walking) and passive (e.g., driving) transport, plays a crucial role in maintaining autonomy and social interaction among older adults. This study aimed to quantify community mobility in older adults and explore the relationship between GPS- and accelerometer-derived metrics and fall risk. Methods: A total of 129 older adults, with and without a history of falls, were monitored over an 8 h period using GPS and accelerometer data. Three experimental conditions were evaluated: GPS data alone, accelerometer data alone, and a combination of both. Classification models, including Random Forest (RF), Support Vector Machines (SVMs), and K-Nearest Neighbors (KNN), were employed to classify participants based on their fall history. Results: For GPS data alone, RF achieved 74% accuracy, while SVM and KNN reached 67% and 62%, respectively. Using accelerometer data, RF achieved 95% accuracy, and both SVM and KNN achieved 90%. Combining GPS and accelerometer data improved model performance, with RF reaching 97% accuracy, SVM achieving 95%, and KNN 87%. Conclusion: The integration of GPS and accelerometer data significantly enhances the accuracy of distinguishing older adults with and without a history of falls. These findings highlight the potential of sensor-based approaches for accurate fall risk assessment in community-dwelling older adults. © 2024 by the authors.
Notas
INDEXACION SCOPUS
Palabras clave
community mobility; fall risk; gait patterns
Citación
DOI
10.3390/s24237651
Link a Vimeo