Spatio-Temporal Prediction of Baltimore Crime Events Using CLSTM Neural Networks

dc.contributor.authorESQUIVEL, NICOLÁS
dc.contributor.authorNICOLIS, ORIETTA
dc.contributor.authorPERALTA, BILLY
dc.contributor.authorMATEU, JORGE
dc.date.accessioned2021-11-19T18:38:39Z
dc.date.available2021-11-19T18:38:39Z
dc.date.issued2020-10
dc.description.abstractCrime activity in many cities worldwide causes significant damages to the lives of victims and their surrounding communities. It is a public disorder problem, and big cities experience large amounts of crime events. Spatio-temporal prediction of crimes activity can help the cities to have a better allocation of police resources and surveillance. Deep learning techniques are considered efficient tools to predict future events analyzing the behavior of past ones; however, they are not usually applied to crime event prediction using a spatio-temporal approach. In this paper, a Convolutional Neural Network (CNN) together with a Long-Short Term Memory (LSTM) network (thus CLSTM-NN) are proposed to predict the presence of crime events over the city of Baltimore (USA). In particular, matrices of past crime events are used as input to a CLSTM-NN to predict the presence of at least one event in future days. The model is implemented on two types of events: ‘‘street robbery’’ and ‘‘larceny’’. The proposed procedure is able to take into account spatial and temporal correlations present in the past data to improve future prediction. The prediction performance of the proposed neural network is assessed under a number of controlled plausible scenarios, using some standard metrics (Accuracy, AUC-ROC, and AUC-PR).es
dc.description.sponsorshipIndexacion: Scopuses
dc.identifier.citationIEEE AccessOpen AccessVolume 8, Pages 209101 - 2091122020 Article number 9252093es
dc.identifier.issn21693536
dc.identifier.urihttp://repositorio.unab.cl/xmlui/handle/ria/20987
dc.language.isoenes
dc.publisherInstitute of Electrical and Electronics Engineers Inc.es
dc.subjectCNN and LSTM neural networks; crime prediction; deep learning; spatial and temporal structurees
dc.titleSpatio-Temporal Prediction of Baltimore Crime Events Using CLSTM Neural Networkses
dc.typeArtículoes
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Nicolas Esquivel-Spatio-Temporal Prediction of Baltimore Crime.pdf
Tamaño:
1.5 MB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN INGLÉS
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: