Toward a Rational Design of 3d-4f Heterometallic Coordination Polymers based on Mixed Valence Copper Centers

Miniatura
Fecha
2019-12
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
American Chemical Society
Nombre de Curso
Licencia CC
Atribución 4.0 Internacional (CC BY 4.0)
Licencia CC
https://creativecommons.org/licenses/by/4.0/deed.es
Resumen
In the present work, we report two new CuI/CuII-GdIII mixed valence heterometallic coordination polymers (HCP), [Gd(H2O)4CuIICuI(IDC)2] (1) and [Gd2(H2O)2(C2O4)2CuII(IDC)2CuI 2(4,4′-bipy)]·4.5H2O (2) obtained under solvothermal synthesis using 1H-imidazole-4,5-dicarboxylic acid (H3IDC) as a principal N,O-bifunctional organic linker. In both compounds, the stabilization of the CuI cations is achieved only by the coordination of N-Atoms belonging to the organic ligands. While 1 presents a two-dimensional honeycomb network obtained by the coordination of single organic linker (IDC3-), 2 contains three different organic ligands (IDC3-, C2O4 2-, and 4,4′-bipy), which allow the construction of a three-dimensional network. From a magnetic point of view, 1 and 2 behave as simple paramagnets at high temperature, presenting ferromagnetic interactions below 50 K, and a positive magnetic coupling constant of J = 0.60 cm-1 and J = 0.22 cm-1 was obtained for 1 and 2 respectively. To the best our knowledge, 1 and 2 correspond to the second and third reported examples containing a CuI/CuII mixed valence system assembled with GdIII cations, thus enriching the chemistry involved in 3d-4f metal-organic materials. Copyright © 2019 American Chemical Society.
Notas
Indexación: Scopus
Palabras clave
Copper, Ligands, Magnetic couplings, Metallic compounds, Organometallics, Positive ions
Citación
DOI
10.1021/acs.cgd.9b00816
Link a Vimeo