Evaluation of Machine Learning Techniques for Classifying and Balancing Data on an Unbalanced Mini-Mental State Examination Test Data Collection Applied in Chile

dc.contributor.authorOrmeno, Pablo
dc.contributor.authorMarquez, Gaston
dc.contributor.authorTaramasco, Carla
dc.date.accessioned2025-01-23T18:37:26Z
dc.date.available2025-01-23T18:37:26Z
dc.date.issued2024
dc.descriptionIndexación: Scopus
dc.description.abstractThe Mini-Mental State Examination (MMSE) is the most widely used cognitive test for assessing whether suspected symptoms align with cognitive impairment or dementia. The results of this test are meaningful for clinicians but exhibit highly unbalanced distributions in studies and analyses regarding the classification of patients with cognitive impairment. This is a complex problem when a large number of MMSE tests are analysed. Therefore, data balancing and classification techniques are crucial to support decision-making in distinguishing patients with cognitive impairment in an effective and efficient manner. This study explores machine learning techniques for data balancing and classification using a real unbalanced dataset consisting of MMSE test responses collected from 103 elderly patients participating in a Chilean patient monitoring project. We used 8 data classification techniques and five data balancing techniques. We evaluated the performance of the techniques using the following metrics: sensitivity, specificity, F1-score, likelihood ratio (LR+ and LR-), diagnostic odds ratio (DOR), and the area under the ROC curve (AUC). From the set of data balancing and classification techniques used in this study, the results indicate that synthetic minority oversampling and random forest balancing techniques improve the accuracy of cognitive impairment diagnosis. The results obtained in this study support clinical decision-making regarding early classification or exclusion of older adult patients with suspected cognitive impairment. © 2013 IEEE.
dc.description.urihttps://ieeexplore-ieee-org.recursosbiblioteca.unab.cl/document/10487950
dc.identifier.citationIEEE Access. Volume 12, Pages 49376 - 49386. 2024
dc.identifier.doi10.1109/ACCESS.2024.3383837
dc.identifier.issn2169-3536
dc.identifier.urihttps://repositorio.unab.cl/handle/ria/63241
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 International Deed (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectImbalanced Data
dc.subjectMachine Learning
dc.subjectMini-mental State Exam
dc.titleEvaluation of Machine Learning Techniques for Classifying and Balancing Data on an Unbalanced Mini-Mental State Examination Test Data Collection Applied in Chile
dc.typeArtículo
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Evaluation_of_Machine_Learning_Techniques_for_Classifying_and_Balancing_Data_on_an_Unbalanced_Mini-Mental_State_Examination_Test_Data_Collection_Applied_in.pdf
Tamaño:
2.57 MB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN INGLÉS
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: