REDACS: Regional emergency-driven adaptive cluster sampling for effective COVID-19 management

dc.contributor.authorStehlík M.
dc.contributor.authorKiseľák J.
dc.contributor.authorDinamarca A.
dc.contributor.authorAlvarado E.
dc.contributor.authorPlaza F.
dc.contributor.authorMedina F.A.
dc.contributor.authorStehlíková S.
dc.contributor.authorMarek J.
dc.contributor.authorVenegas B.
dc.contributor.authorGajdoš A.
dc.contributor.authorLi Y.
dc.contributor.authorKatuščák S.
dc.contributor.authorBražinová A.
dc.contributor.authorZeintl E.
dc.contributor.authorLu Y.
dc.date.accessioned2024-03-27T12:52:35Z
dc.date.available2024-03-27T12:52:35Z
dc.date.issued2023
dc.descriptionIndexación: Scopus.
dc.description.abstractAs COVID-19 is spreading, national agencies need to monitor and track several metrics. Since we do not have perfect testing programs on the hand, one needs to develop an advanced sampling strategies for prevalence study, control and management. Here we introduce REDACS: Regional emergency-driven adaptive cluster sampling for effective COVID-19 management and control and justify its usage for COVID-19. We show its advantages over classical massive individual testing sampling plans. We also point out how regional and spatial heterogeneity underlines proper sampling. Fundamental importance of adaptive control parameters from emergency health stations and medical frontline is outlined. Since the Northern hemisphere entered Autumn and Winter season (this paper was originally submitted in November 2020), practical illustration from spatial heterogeneity of Chile (Southern hemisphere, which already experienced COVID-19 winter outbreak peak) is underlying the importance of proper regional heterogeneity of sampling plan. We explain the regional heterogeneity by microbiological backgrounds and link it to behavior of Lyapunov exponents. We also discuss screening by antigen tests from the perspective of “on the fly” biomarker validation, i.e., during the screening. © 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.
dc.description.urihttps://www.tandfonline.com/doi/full/10.1080/07362994.2022.2033126
dc.identifier.citationStochastic Analysis and Applications. Open Access. Volume 41, Issue 3, Pages 474 - 508. 2023
dc.identifier.doi10.1080/07362994.2022.2033126
dc.identifier.issn0736-2994
dc.identifier.urihttps://repositorio.unab.cl/handle/ria/55355
dc.language.isoen
dc.publisherTaylor and Francis Ltd.
dc.rights.licenseCC BY-NC-ND 4.0 DEED Attribution-NonCommercial-NoDerivs 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectACS
dc.subjectAntigen test validation
dc.subjectPrevalence
dc.subjectPrimary 40E10
dc.subjectREDACS
dc.subjectSampling
dc.subjectSecondary 60G07
dc.titleREDACS: Regional emergency-driven adaptive cluster sampling for effective COVID-19 management
dc.typeArtículo
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Stehlik_REDACS_Regional_emergency-driven_adaptive_cluster_sampling_2023.pdf
Tamaño:
3.92 MB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN INGLÉS.
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: