The Structure-Function Linkage Database

dc.contributor.authorAkiva, Eyal
dc.contributor.authorBrown, Shoshana
dc.contributor.authorAlmonacid, Daniel E.
dc.contributor.authorBarber, Alan E.
dc.contributor.authorCuster, Ashley F.
dc.contributor.authorHicks, Michael A.
dc.contributor.authorHuang, Conrad C.
dc.contributor.authorLauck, Florian
dc.contributor.authorMashiyama, Susan T.
dc.contributor.authorMeng, Elaine C.
dc.contributor.authorMischel, David
dc.contributor.authorMorris, John H.
dc.contributor.authorOjha, Sunil
dc.contributor.authorSchnoes, Alexandra M.
dc.contributor.authorStryke, Doug
dc.contributor.authorYunes, Jeffrey M.
dc.contributor.authorFerrin, Thomas E.
dc.contributor.authorHolliday, Gemma L.
dc.contributor.authorBabbitt, Patricia C.
dc.date.accessioned2024-06-27T17:47:17Z
dc.date.available2024-06-27T17:47:17Z
dc.date.issued2014-01-01
dc.descriptionINDEXACIÓN: SCOPUS.
dc.description.abstractThe Structure-Function Linkage Database (SFLD, http://sfld.rbvi.ucsf.edu/) is a manually curated classification resource describing structure-function relationships for functionally diverse enzyme superfamilies. Members of such superfamilies are diverse in their overall reactions yet share a common ancestor and some conserved active site features associated with conserved functional attributes such as a partial reaction. Thus, despite their different functions, members of these superfamilies 'look alike', making them easy to misannotate. To address this complexity and enable rational transfer of functional features to unknowns only for those members for which we have sufficient functional information, we subdivide superfamily members into subgroups using sequence information, and lastly into families, sets of enzymes known to catalyze the same reaction using the same mechanistic strategy. Browsing and searching options in the SFLD provide access to all of these levels. The SFLD offers manually curated as well as automatically classified superfamily sets, both accompanied by search and download options for all hierarchical levels. Additional information includes multiple sequence alignments, tab-separated files of functional and other attributes, and sequence similarity networks. The latter provide a new and intuitively powerful way to visualize functional trends mapped to the context of sequence similarity. © 2013 The Author(s). Published by Oxford University Press.
dc.identifier.citationNucleic Acids Research, Volume 42, Issue D1, Pages D521-D530, 1 January 2014
dc.identifier.doi10.1093/nar/gkt1130
dc.identifier.issn1362-4962
dc.identifier.urihttps://repositorio.unab.cl/handle/ria/58004
dc.language.isoen
dc.publisherOxford University Press
dc.rights.licenseCC BY-NC-ND 3.0 ATTRIBUTION-NONCOMMERCIAL-NODERIVS 3.0 UNPORTED Deed
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectDatabases, Protein
dc.subjectEnzymes
dc.subjectInternet
dc.subjectMolecular Sequence Annotation
dc.subjectSequence Alignment
dc.subjectStructure-Activity Relationship
dc.titleThe Structure-Function Linkage Database
dc.typeArtículo
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
gkt1130 (1).pdf
Tamaño:
7.8 MB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN INGLÉS.
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: