Minicells as an Escherichia coli mechanism for the accumulation and disposal of fluorescent cadmium sulphide nanoparticles
dc.contributor.author | Valenzuela-Ibaceta, Felipe | |
dc.contributor.author | Torres-Olea, Nicolás | |
dc.contributor.author | Ramos-Zúñiga, Javiera | |
dc.contributor.author | Dietz-Vargas, Claudio | |
dc.contributor.author | Navarro, Claudio A. | |
dc.contributor.author | Pérez-Donoso, José M. | |
dc.date.accessioned | 2024-06-17T17:33:38Z | |
dc.date.available | 2024-06-17T17:33:38Z | |
dc.date.issued | 2024-12 | |
dc.description | Indexación: Web Of Science | |
dc.description.abstract | Background Bacterial biosynthesis of fluorescent nanoparticles or quantum dots (QDs) has emerged as a unique mechanism for heavy metal tolerance. However, the physiological pathways governing the removal of QDs from bacterial cells remains elusive. This study investigates the role of minicells, previously identified as a means of eliminating damaged proteins and enhancing bacterial resistance to stress. Building on our prior work, which unveiled the formation of minicells during cadmium QDs biosynthesis in Escherichia coli, we hypothesize that minicells serve as a mechanism for the accumulation and detoxification of QDs in bacterial cells. Results Intracellular biosynthesis of CdS QDs was performed in E. coli mutants Delta minC and Delta minCDE, known for their minicell-producing capabilities. Fluorescence microscopy analysis demonstrated that the generated minicells exhibited fluorescence emission, indicative of QD loading. Transmission electron microscopy (TEM) confirmed the presence of nanoparticles in minicells, while energy dispersive spectroscopy (EDS) revealed the coexistence of cadmium and sulfur. Cadmium quantification through flame atomic absorption spectrometry (FAAS) demonstrated that minicells accumulated a higher cadmium content compared to rod cells. Moreover, fluorescence intensity analysis suggested that minicells accumulated a greater quantity of fluorescent nanoparticles, underscoring their efficacy in QD removal. Biosynthesis dynamics in minicell-producing strains indicated that biosynthesized QDs maintained high fluorescence intensity even during prolonged biosynthesis times, suggesting continuous QD clearance in minicells. Conclusions These findings support a model wherein E. coli utilizes minicells for the accumulation and removal of nanoparticles, highlighting their physiological role in eliminating harmful elements and maintaining cellular fitness. Additionally, this biosynthesis system presents an opportunity for generating minicell-coated nanoparticles with enhanced biocompatibility for diverse applications. | |
dc.description.accesoabierto | SI | |
dc.description.agrad | This work was supported by Erika Elcira Donoso López and Fondecyt 1200870. In the loving memory of Daniella Ibaceta Rojas, a dedicated, loving, and nur‑turing mother. We are grateful for your life lessons and the selfess years youdevoted to bettering the lives of others. Funding:This study was financially supported by Fondecyt 1200870 (J.M.P-D) and AFOSR FA9550-22-1-0509 (J.M.P-D). | |
dc.description.uri | https://www-webofscience-com.recursosbiblioteca.unab.cl/wos/woscc/full-record/WOS:001178332000001 | |
dc.identifier.citation | Journal of Nanobiotechnology. Volume 22, Issue 1. December 2024. Article number 78 | |
dc.identifier.doi | 10.1186/s12951-024-02348-0 | |
dc.identifier.folio | Fondecyt 1200870 | |
dc.identifier.genero | H | |
dc.identifier.issn | 1477-3155 | |
dc.identifier.uri | https://repositorio.unab.cl/handle/ria/57638 | |
dc.language.iso | en | |
dc.other.orcid | https://orcid.org/0000-0002-9506-1716 | |
dc.publisher | BioMed Central Ltd | |
dc.rights.license | Attribution 4.0 International Deed (CC BY 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Minicells | |
dc.subject | Quantum dots | |
dc.subject | Nanoparticles | |
dc.subject | Cell division | |
dc.subject | Cadmium | |
dc.subject | Escherichia coli | |
dc.subject | Tolerance mechanisms | |
dc.title | Minicells as an Escherichia coli mechanism for the accumulation and disposal of fluorescent cadmium sulphide nanoparticles | |
dc.type | Artículo |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Valenzuela_Minicells as an Escherichia coli mechanism for the accumulation and disposal of fluorescent cadmium sulphide nanoparticles.pdf
- Tamaño:
- 4.95 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- TEXTO COMPLETO EN INGLÉS
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: