Immune-mediated hookworm clearance and survival of a marine mammal decrease with warmer ocean temperatures
Cargando...
Archivos
Fecha
2018-11
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
eLife Sciences Publications Ltd
Nombre de Curso
Licencia CC
Licencia CC
Resumen
Increases in ocean temperature are associated with changes in the distribution of fish stocks, and the foraging regimes and maternal attendance patterns of marine mammals. However, it is not well understood how these changes affect offspring health and survival. The maternal attendance patterns and immunity of South American fur seals were assessed in a rookery where hookworm disease is the main cause of pup mortality. Pups receiving higher levels of maternal attendance had a positive energy balance and a more reactive immune system. These pups were able to expel hookworms through a specific immune mediated mechanism and survived the infection. Maternal attendance was higher in years with low sea surface temperature, therefore, the mean hookworm burden and mortality increased with sea surface temperature over a 10-year period. We provide a mechanistic explanation regarding how changes in ocean temperature and maternal care affect infectious diseases dynamics in a marine mammal. © Seguel et al.
Notas
Indexación: Scopus.
We appreciate the logistical support of the Chilean Navy, Artisanal fishermen of Quellon (Vessel crews Marimar II and Nautylus V), and the crews of the Chilean Navy lighthouse. We thank Amanda Hooper, Eugene DeRango, Elvira Vergara, Ignacio Silva, Dr. Lorraine Barbosa, Emma Milner, Sian Tarrant, Emily Morris, Suzette Miller, and Piero Becker for dedicated field assistance. We thank Dr. Vanesa Ezenwa for comments and insights in earlier versions of the manuscript. This work was supported by The Rufford Small Grant Foundation (Grant N 18815–1), Morris Animal Foundation (Grant N D16ZO-413), and the Society for Marine Mammalogy Small Grants in aid awards 2015 and 2016.
We appreciate the logistical support of the Chilean Navy, Artisanal fishermen of Quellon (Vessel crews Marimar II and Nautylus V), and the crews of the Chilean Navy lighthouse. We thank Amanda Hooper, Eugene DeRango, Elvira Vergara, Ignacio Silva, Dr. Lorraine Barbosa, Emma Milner, Sian Tarrant, Emily Morris, Suzette Miller, and Piero Becker for dedicated field assistance. We thank Dr. Vanesa Ezenwa for comments and insights in earlier versions of the manuscript. This work was supported by The Rufford Small Grant Foundation (Grant N 18815–1), Morris Animal Foundation (Grant N D16ZO-413), and the Society for Marine Mammalogy Small Grants in aid awards 2015 and 2016.
Palabras clave
Ancylostomatoidea, Animal Diseases, Animals, Aquatic Organisms, Fur Seals, Global Warming, Hookworm Infections, Maternal Behavior, Oceans and Seas, Survival Analysis, Temperature
Citación
eLife, 7.