Editorial: Cognitive inspired aspects of robot learning
dc.contributor.author | Cruz, Francisco | |
dc.contributor.author | Solis, Miguel A. | |
dc.contributor.author | Navarro-Guerrero, Nicolás | |
dc.date.accessioned | 2024-05-23T22:38:59Z | |
dc.date.available | 2024-05-23T22:38:59Z | |
dc.date.issued | 2023 | |
dc.description | Indexación: Scopus. | |
dc.description.abstract | Robot learning enables robots to acquire new knowledge and skills through experience and interaction with their environment. Robot learning involves developing algorithms that allow robots to learn autonomously, adapt to new situations, and improve their performance over time. Using machine learning, robots can analyze large amounts of data and extract patterns to make decisions. This approach allows robots to learn from past experiences and apply that knowledge to future tasks, ultimately enhancing their capabilities and versatility. However, although machine learning has shown great potential in robot learning, it also faces several challenges and limitations. One significant problem, for instance, is the issue of data scarcity. Collecting sufficient and diverse data for training robots can be complex and time-consuming (Navarro-Guerrero et al., 2023). Unlike traditional machine learning applications where large datasets might be available, gathering data for robot learning often requires physical interactions and real-world environments, which can be expensive and challenging (Navarro-Guerrero et al., 2023). | |
dc.description.uri | https://www.frontiersin.org/articles/10.3389/fnbot.2023.1256788/full | |
dc.identifier.citation | Frontiers in Neurorobotics. Volume 17. 2023. Article number 1256788 | |
dc.identifier.doi | 10.3389/fnbot.2023.1256788 | |
dc.identifier.issn | 1662-5218 | |
dc.identifier.uri | https://repositorio.unab.cl/handle/ria/57033 | |
dc.language.iso | en | |
dc.publisher | Frontiers Media SA | |
dc.rights.license | CC BY 4.0 DEED Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Bio-inspired robotics | |
dc.subject | Cognitive robotics | |
dc.subject | Robot learning and behavior adaptation | |
dc.subject | Robotics | |
dc.subject | Social robotics/HRI engineers | |
dc.title | Editorial: Cognitive inspired aspects of robot learning | |
dc.type | Artículo |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Cruz_Editorial_Cognitive_inspired_aspects_of_robot_2023.pdf
- Tamaño:
- 91.64 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- TEXTO COMPLETO EN INGLÉS
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: