Bibliometric behavior of big data and digital marketing as real-time multimedia

dc.contributor.authorRamírez, R.
dc.contributor.authorSantamaria, M.
dc.contributor.authorMonsalve, L.
dc.contributor.authorLay, N.
dc.contributor.authorHinojoza-Montañez, S.
dc.contributor.authorGarcía, M.
dc.date.accessioned2024-09-10T17:20:59Z
dc.date.available2024-09-10T17:20:59Z
dc.date.issued2024
dc.descriptionTEXTO COMPLETO EN INGLÉS
dc.description.abstractTechnological trends such as big data have generated interest in its application in digital marketing, due to the ease of precision in business and in daily decision-making, where there is a need to respond to the needs of the market in real time and achieve competitiveness. We aim to describe the bibliometric behavior of big data and digital marketing as real-time multimedia applications during the period from 2012 to 2023. We based our methodology on the bibliometric analysis of statistical relationships using VOSviewer software. We employed the normalization technique and applied the association strength method for keyword co-occurrence analysis and author co-citation analysis. Additionally, we used the hermeneutic technique to interpret the results. The findings indicate that research trends are associated with social networks; data processing; machine learning techniques; real-time system; online system; data analysis; data management. The contributing authors were Wang Y.; Chen Y.; Liu Y.; Zhang X.; Wang X.; Wang J.; Zhang Y.; Li J. We concluded that the common software in the study includes Hadoop, Reduced Map, Apache Spark, Twitter, Apache Storm, Spark Transmission, Transformer, and Weibo.
dc.description.urihttps://www-sciencedirect-com.recursosbiblioteca.unab.cl/science/article/pii/S1877050924017861
dc.identifier.citationProcedia Computer Science, Volume 241 , 2024, Pages 526-532
dc.identifier.doihttps://doi.org/10.1016/j.procs.2024.08.075
dc.identifier.issn1877-0509
dc.identifier.urihttps://repositorio.unab.cl/handle/ria/60028
dc.language.isoen
dc.publisherElsevier
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMarketing digital
dc.subjectbig data
dc.subjectartificial intelligence
dc.subjectscientometric
dc.titleBibliometric behavior of big data and digital marketing as real-time multimedia
dc.typeArtículo
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Ramirez_Bibliometric behavior of big data and digital marketing as real-time multimedia.pdf
Tamaño:
1.68 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: