Forecasting Models Selection Mechanism for Supply Chain Demand Estimation

dc.contributor.authorSepúlveda-Rojas, J.P.
dc.contributor.authorRojas, F.
dc.contributor.authorValdés-González, H.
dc.contributor.authorMartín, M.S.
dc.date.accessioned2017-08-18T20:15:19Z
dc.date.available2017-08-18T20:15:19Z
dc.date.issued2015
dc.descriptionIndexación: Scopus.es_CL
dc.description.abstractThe aim of this work is to present a selection mechanism of forecast models to contribute to demand estimation in a supply chain. At present, to estimate a product future demand, several forecast models based on historical information - quantitative and qualitative- are used. When companies face this situation, they select a group of forecast models (usually based on a visual basis of the time series), then estimate, and with the forecast error measurement criteria decide which the best method is. But they always have to estimate over all the selected forecast models. Based on that, this paper introduces an alternative methodology to estimate the best-forecast model without the need to estimate all the forecast models or complement with another technique (visual). To do so, the main theoretical fundaments associated to this new methodology are addressed, and then the methodology itself is presented in order to be applied in two real cases of Chilean companies to finally conclude the results of the described mechanism.es_CL
dc.description.urihttp://www.sciencedirect.com/science/article/pii/S1877050915015434?via%3Dihub
dc.identifier.citationProcedia Computer Science. Volume 55, 2015, Pages 1060-1068es_CL
dc.identifier.otherhttps://doi.org/10.1016/j.procs.2015.07.068
dc.identifier.urihttp://repositorio.unab.cl/xmlui/handle/ria/3981
dc.language.isoenes_CL
dc.publisherELSEVIER SCIENCEes_CL
dc.subjectTime Serieses_CL
dc.subjectAutocorrelationes_CL
dc.subjectCoefficientes_CL
dc.subjectForecastinges_CL
dc.titleForecasting Models Selection Mechanism for Supply Chain Demand Estimationes_CL
dc.typeArtículoes_CL
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Sepulveda-Rojas_J_Forecasting_Models_Selection.pdf
Tamaño:
297.8 KB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO INGLES
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: