Semi-supervised regression using diffusion on graphs

dc.contributor.authorTimilsina, M.
dc.contributor.authorFigueroa, A.
dc.contributor.authord'Aquin, M.
dc.contributor.authorYang, H.
dc.date.accessioned2021-05-12T21:27:20Z
dc.date.available2021-05-12T21:27:20Z
dc.date.issued2021-06
dc.descriptionIndexación Scopuses
dc.description.abstractIn real-world machine learning applications, unlabeled training data are readily available, but labeled data are expensive and hard to obtain. Therefore, semi-supervised learning algorithms have gathered much attention. Previous studies in this area mainly focused on a semi-supervised classification problem, whereas semi-supervised regression has received less attention. In this paper, we proposed a novel semi-supervised regression algorithm using heat diffusion with a boundary-condition that guarantees a closed-form solution. Experiments from artificial and real datasets from business, biomedical, physical, and social domain show that the boundary-based heat diffusion method can effectively outperform the top state of the art methods. © 2021 The Author(s)es
dc.description.urihttps://www-sciencedirect-com.recursosbiblioteca.unab.cl/science/article/pii/S1568494621001113?via%3Dihub
dc.identifier.citationApplied Soft Computing, Volume 104, June 2021, Article number 107188es
dc.identifier.doi10.1016/j.asoc.2021.107188
dc.identifier.issn15684946
dc.identifier.urihttp://repositorio.unab.cl/xmlui/handle/ria/18837
dc.language.isoenes
dc.publisherElsevier Ltdes
dc.subjectManifold Learninges
dc.subjectLocally Linear Embeddinges
dc.subjectDimensionality Reductiones
dc.subjectBoundary heat diffusiones
dc.titleSemi-supervised regression using diffusion on graphses
dc.typeArtículoes
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Timilsina_M_Semi-supervised_2021.pdf
Tamaño:
871.46 KB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN INGLÉS
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: