Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity

No hay miniatura disponible
Fecha
2017-03
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Nature Publishing Group
Nombre de Curso
Licencia CC
ATRIBUCIÓN 4.0 INTERNACIONAL CC BY 4.0 Deed
Licencia CC
https://creativecommons.org/licenses/by/4.0/deed.es
Resumen
Global stressors, such as ocean acidification, constitute a rapidly emerging and significant problem for marine organisms, ecosystem functioning and services. The coastal ecosystems of the Humboldt Current System (HCS) off Chile harbour a broad physical-chemical latitudinal and temporal gradient with considerable patchiness in local oceanographic conditions. This heterogeneity may, in turn, modulate the specific tolerances of organisms to climate stress in species with populations distributed along this environmental gradient. Negative response ratios are observed in species models (mussels, gastropods and planktonic copepods) exposed to changes in the partial pressure of CO 2 (pCO2) far from the average and extreme pCO2 levels experienced in their native habitats. This variability in response between populations reveals the potential role of local adaptation and/or adaptive phenotypic plasticity in increasing resilience of species to environmental change. The growing use of standard ocean acidification scenarios and treatment levels in experimental protocols brings with it a danger that inter-population differences are confounded by the varying environmental conditions naturally experienced by different populations. Here, we propose the use of a simple index taking into account the natural pCO2 variability, for a better interpretation of the potential consequences of ocean acidification on species inhabiting variable coastal ecosystems. Using scenarios that take into account the natural variability will allow understanding of the limits to plasticity across organismal traits, populations and species. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
Notas
Indexación: Scopus
Palabras clave
Citación
Nature Ecology and Evolution Volume 1, Issue 413 March 2017 Article number 0084
DOI
10.1038/s41559-017-0084
Link a Vimeo