Determinants of copper resistance in Acidithiobacillus ferrivorans ACH isolated from the Chilean altiplano

Cargando...
Miniatura
Fecha
2020-08
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
MDPI AG
Nombre de Curso
Licencia CC
Attribution 4.0 International (CC BY 4.0)
Licencia CC
https://creativecommons.org/licenses/by/4.0/
Resumen
The use of microorganisms in mining processes is a technology widely employed around the world. Leaching bacteria are characterized by having resistance mechanisms for several metals found in their acidic environments, some of which have been partially described in the Acidithiobacillus genus (mainly on ferrooxidans species). However, the response to copper has not been studied in the psychrotolerant Acidithiobacillus ferrivorans strains. Therefore, we propose to elucidate the response mechanisms of A. ferrivorans ACH to high copper concentrations (0–800 mM), describing its genetic repertoire and transcriptional regulation. Our results show that A. ferrivorans ACH can grow in up to 400 mM of copper. Moreover, we found the presence of several copper-related makers, belonging to cop and cus systems, as well as rusticyanins and periplasmatic acop protein in the genome. Interestingly, the ACH strain is the only one in which we find three copies of copB and copZ genes. Moreover, transcriptional expression showed an up-regulation response (acop, copZ, cusA, rusA, and rusB) to high copper concentrations. Finally, our results support the important role of these genes in A. ferrivorans copper stress resistance, promoting the use of the ACH strain in industrial leaching under low temperatures, which could decrease the activation times of oxidation processes and the energy costs. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Notas
Indexación; Scopus.
Palabras clave
A. ferrivorans ACH, Bioleaching, Chilean Altiplano, Copper resistance
Citación
Genes Open Access Volume 11, Issue 8, Pages 1 - 19 August 2020 Article number 844
DOI
10.3390/genes11080844
Link a Vimeo