Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Albericio, Fernando"

Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Differential Detection of Amyloid Aggregates in Old Animals Using Gold Nanorods by Computerized Tomography: A Pharmacokinetic and Bioaccumulation Study
    (Dove Medical Press Ltd, 2023) Jara-Guajardo, Pedro; Morales-Zavala, Francisco; Giralt, Ernest; Araya, Eyleen; Acosta, Gerardo A.; Albericio, Fernando; Alvarez, Alejandra R.; Kogan, Marcelo J.
    Introduction: The development of new materials and tools for radiology is key to the implementation of this diagnostic technique in clinics. In this work, we evaluated the differential accumulation of peptide-functionalized GNRs in a transgenic animal model (APPswe/PSENd1E9) of Alzheimer’s disease (AD) by computed tomography (CT) and measured the pharmacokinetic parameters and bioaccumulation of the nanosystem. Methods: The GNRs were functionalized with two peptides, Ang2 and D1, which conferred on them the properties of crossing the blood-brain barrier and binding to amyloid aggregates, respectively, thus making them a diagnostic tool with great potential for AD. The nanosystem was administered intravenously in APPswe/PSEN1dE9 model mice of 4-, 8-and 18-months of age, and the accumulation of gold nanoparticles was observed by computed tomography (CT). The gold accumulation and biodistribution were determined by atomic absorption. Results: Our findings indicated that 18-month-old animals treated with our nanosystem (GNR-D1/Ang2) displayed noticeable differences in CT signals compared to those treated with a control nanosystem (GNR-Ang2). However, no such distinctions were observed in younger animals. This suggests that our nanosystem holds the potential to effectively detect AD pathology. Discussion: These results support the future development of gold nanoparticle-based technology as a more effective and accessible alternative for the diagnosis of AD and represent a significant advance in the development of gold nanoparticle applications in disease diagnosis. © 2023 Jara-Guajardo et al. This work is published and licensed by Dove Medical Press Limited.
  • No hay miniatura disponible
    Ítem
    Gold nanoparticle based double-labeling of melanoma extracellular vesicles to determine the specificity of uptake by cells and preferential accumulation in small metastatic lung tumors
    (BioMed Central Ltd., 2020) Lara, Pablo; Palma-Florez, Sujey; Salas-Huenuleo, Edison; Polakovicova, Iva; Guerrero, Simón; Lobos-Gonzalez, Lorena; Campos, America; Muñoz, Luis; Jorquera-Cordero, Carla; Varas-Godoy, Manuel; Cancino, Jorge; Arias, Eloísa; Villegas, Jaime; Cruz, Luis J.; Albericio, Fernando; Araya, Eyleen; Corvalan, Alejandro H.; Quest, Andrew F. G.; Kogan, Marcelo J.
    Background: Extracellular vesicles (EVs) have shown great potential for targeted therapy, as they have a natural ability to pass through biological barriers and, depending on their origin, can preferentially accumulate at defined sites, including tumors. Analyzing the potential of EVs to target specific cells remains challenging, considering the unspecific binding of lipophilic tracers to other proteins, the limitations of fluorescence for deep tissue imaging and the effect of external labeling strategies on their natural tropism. In this work, we determined the cell-type specific tropism of B16F10-EVs towards cancer cell and metastatic tumors by using fluorescence analysis and quantitative gold labeling measurements. Surface functionalization of plasmonic gold nanoparticles was used to promote indirect labeling of EVs without affecting size distribution, polydispersity, surface charge, protein markers, cell uptake or in vivo biodistribution. Double-labeled EVs with gold and fluorescent dyes were injected into animals developing metastatic lung nodules and analyzed by fluorescence/computer tomography imaging, quantitative neutron activation analysis and gold-enhanced optical microscopy. Results: We determined that B16F10 cells preferentially take up their own EVs, when compared with colon adenocarcinoma, macrophage and kidney cell-derived EVs. In addition, we were able to detect the preferential accumulation of B16F10 EVs in small metastatic tumors located in lungs when compared with the rest of the organs, as well as their precise distribution between tumor vessels, alveolus and tumor nodules by histological analysis. Finally, we observed that tumor EVs can be used as effective vectors to increase gold nanoparticle delivery towards metastatic nodules. Conclusions: Our findings provide a valuable tool to study the distribution and interaction of EVs in mice and a novel strategy to improve the targeting of gold nanoparticles to cancer cells and metastatic nodules by using the natural properties of malignant EVs. © 2020 The Author(s).
  • No hay miniatura disponible
    Ítem
    NIR and glutathione trigger the surface release of methotrexate linked by Diels-Alder adducts to anisotropic gold nanoparticles
    (Elsevier Ltd, 2021-12) Bolaños, Karen; Sánchez-Navarro, Macarena; Giralt, Ernest; Acosta, Gerardo; Albericio, Fernando; Kogan, Marcelo J.; Araya, Eyleen
    The administration and controlled release of drugs over time remains one of the greatest challenges of science today. In the nanomaterials field, anisotropic gold nanoparticles (AuNPs) with plasmon bands centered at the near-infrared region (NIR), such as gold nanorods (AuNRs) and gold nanoprisms (AuNPrs), under laser irradiation, locally increase the temperature, allowing the release of drugs. In this sense, temporally controlled drug delivery could be promoted by external stimuli using thermo-reversible chemical reactions, such as Diels-Alder cycloadditions from a diene and a dienophile fragment (compound a). In this study, an antitumor drug (methotrexate, MTX) was linked to plasmonic AuNPs by a Diels-Alder adduct (compound c), which after NIR suffers a retro-Diels-Alder reaction, producing release of the drug (compound b). We obtained two nanosystems based on AuNRs and AuNPrs. Both nanoconstructs were coated with BSA-r8 (Bovine Serum Albumin functionalized with Arg8, all-D octa arginine) in order to increase the colloidal stability and promote internalization of the nanosystems on HeLa and SK-BR-3 cells. In addition, the presence of BSA allows protecting the cargo from being released on the extracellular environment and promotes the photothermal release of the drug in the presence of glutathione (GSH). The nanosystems' drug release profile was evaluated after NIR irradiation in the presence and absence of glutathione (GSH), showing a considerable increase of drug release when NIR light and glutathione were combined. This work broadens the range of possibilities of using two complementary strategies for the controlled release of an antitumor drug from AuNRs and AuNPrs: the photothermal cleavage of a thermolabile adduct controlled by an external stimulus (laser irradiation), complemented with the use of the intracellular metabolite GSH.