Examinando por Autor "Arenas-Salinas, Mauricio"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem AFAL: a web service for profiling amino acids surrounding ligands in proteins(Journal of Computer-Aided Molecular Design. Volume 28, Issue 11, Pages 1069 - 1076. November 2014, 2014-11) Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S.; Quatrini, RaquelWith advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein–ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand–protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5′-triphosphate.Ítem Mutantelec: An In Silico mutation simulation platform for comparative electrostatic potential profiling of proteins(NLM (Medline), 2017-03) Valdebenito-Maturana, Braulio; Reyes-Suarez, Jose Antonio; Henriquez, Jaime; Holmes, David S.; Quatrini, Raquel; Pohl, Ehmke; Arenas-Salinas, MauricioThe electrostatic potential plays a key role in many biological processes like determining the affinity of a ligand to a given protein target, and they are responsible for the catalytic activity of many enzymes. Understanding the effect that amino acid mutations will have on the electrostatic potential of a protein, will allow a thorough understanding of which residues are the most important in a protein. MutantElec, is a friendly web application for in silico generation of site-directed mutagenesis of proteins and the comparison of electrostatic potential between the wild type protein and the mutant(s), based on the three-dimensional structure of the protein. The effect of the mutation is evaluated using different approach to the traditional surface map. MutantElec provides a graphical display of the results that allows the visualization of changes occurring at close distance from the mutation and thus uncovers the local and global impact of a specific change. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.Ítem The type IV secretion system of ICEAfe1: Formation of a conjugative pilus in Acidithiobacillus ferrooxidans(Frontiers in Microbiology, 2019) Flores-Ríos, Rodrigo; Moya-Beltrán, Ana; Pareja-Barrueto, Claudia; Arenas-Salinas, Mauricio; Valenzuela, Sebastián; Orellana, Omar; Quatrini, RaquelThe dispersal of mobile genetic elements and their gene cargo relies on type IV secretion systems (T4SS). In this work the ICEAfe1 Tra-type T4SS nanomachine, encoded in the publicly available genome of Acidithiobacillus ferrooxidans ATCC 23270TY, was characterized in terms of its organization, conservation, expression and mating bridge formation. Twenty-one conjugative genes grouped in four genetic clusters encode the ICEAfe1 T4SS, containing all the indispensable functions for the formation and stabilization of the pili and for DNA processing. The clusters' organization resembles that of other mobile genetic elements (such as plasmids and integrative and conjugative elements-ICEs). Sequence conservation, genetic organization and distribution of the tra system in the genomes of other sequenced Acidithiobacillus spp. suggests that the ICEAfe1 T4SS could mediate the lateral gene transfer between related bacteria. All ICEAfe1 T4SS genes are transcriptionally active and expressed from four independent operons. The transcriptional levels of selected marker genes increase in response to Mitomycin C treatment, a DNA damage elicitor that has acknowledged stimulatory effects on excision rates and gene expression of other ICEs, including ICEAfe1. Using a tailor-made pilin-antiserum against ICEAfe1 T4SS TraA pilin and epifluorescence microscopy, the presence of the conjugative pili on the cell surface of A. ferrooxidans could be demonstrated. Additionally, immunodetection assays, by immunogold, allowed the identification of pili-like extracellular structures. Together, the results obtained in this work demonstrate that the ICEAfe1 T4SS is phylogenetically conserved within the taxon, is expressed at mRNA and protein levels in vivo in the A. ferrooxidans type strain, and produces a pili-like structure of extracellular and intercellular localization in this model acidophile, supporting its functionality. Additional efforts will be required to prove conjugation of the ICEAfe1 or parts of this element through the cognate T4SS.