Examinando por Autor "Arriagada, G."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Influences of thermal environment on fish growth(John Wiley and Sons Ltd., 2017-07) Boltaña, S.; Sanhueza, N.; Aguilar, A.; Gallardo-Escarate, C.; Arriagada, G.; Valdes, J.A.; Soto, D.; Quiñones, R.A.Thermoregulation in ectothermic animals is influenced by the ability to effectively respond to thermal variations. While it is known that ectotherms are affected by thermal changes, it remains unknown whether physiological and/or metabolic traits are impacted by modifications to the thermal environment. Our research provides key evidence that fish ectotherms are highly influenced by thermal variability during development, which leads to important modifications at several metabolic levels (e.g., growth trajectories, microstructural alterations, muscle injuries, and molecular mechanisms). In Atlantic salmon (Salmo salar), a wide thermal range (ΔT 6.4°C) during development (posthatch larvae to juveniles) was associated with increases in key thermal performance measures for survival and growth trajectory. Other metabolic traits were also significantly influenced, such as size, muscle cellularity, and molecular growth regulators possibly affected by adaptive processes. In contrast, a restricted thermal range (ΔT 1.4°C) was detrimental to growth, survival, and cellular microstructure as muscle growth could not keep pace with increased metabolic demands. These findings provide a possible basic explanation for the effects of thermal environment during growth. In conclusion, our results highlight the key role of thermal range amplitude on survival and on interactions with major metabolism-regulating processes that have positive adaptive effects for organisms.Ítem Neurochemical and behavioral characterization of neuronal glutamate transporter EAAT3 heterozygous mice(Sociedad de Biología de Chile, 2017) González, L.F.; Henríquez-Belmar, F.; Delgado-Acevedo, C.; Cisternas-Olmedo, M.; Arriagada, G.; Sotomayor-Zárate, R.; Murphy, D.L.; Moya, P.R.BACKGROUND: Obsessive-compulsive disorder (OCD) is a severe neuropsychiatric condition affecting 1-3% of the worldwide population. OCD has a strong genetic component, and the SLC1A1 gene that encodes neuronal glutamate transporter EAAT3 is a strong candidate for this disorder. To evaluate the impact of reduced EAAT3 expression in vivo, we studied male EAAT3 heterozygous and wild-type littermate mice using a battery of behavioral paradigms relevant to anxiety (open field test, elevated plus maze) and compulsivity (marble burying), as well as locomotor activity induced by amphetamine. Using high-performance liquid chromatography, we also determined tissue neurotransmitter levels in cortex, striatum and thalamus-brain areas that are relevant to OCD. RESULTS: Compared to wild-type littermates, EAAT3 heterozygous male mice have unaltered baseline anxiety-like, compulsive-like behavior and locomotor activity. Administration of acute amphetamine (5 mg/kg intraperitoneally) increased locomotion with no differences across genotypes. Tissue levels of glutamate, GABA, dopamine and serotonin did not vary between EAAT3 heterozygous and wild-type mice. CONCLUSIONS: Our results indicate that reduced EAAT3 expression does not impact neurotransmitter content in the corticostriatal circuit nor alter anxiety or compulsive-like behaviors.Ítem Role of SUMO-1 and SUMO interacting motifs in rhesus TRIM5α-mediated restriction(BMC, 2013) Lukic, Z.; Goff, S.; Campbell, E.; Arriagada, G.TRIM5α is a member of the tripartite motif family of proteins that restricts retroviral infection in a species-specific manner. The restriction requires an interaction between the viral capsid lattice and the B30.2/SPRY domain of TRIM5α. Previously, we determined that two SUMO interacting motifs (SIMs) present in the B30.2/SPRY domain of human TRIM5α (huTRIM5α) were important for the restriction of N-tropic Murine Leukemia Virus. Here, we examined whether SUMO expression and the SIM1 and SIM2 motifs in rhesus monkey TRIM5α (rhTRIM5α) are similarly important for Human Immunodeficiency Type 1 (HIV-) restriction. Results: We found that mutation of SIM1 and SIM2 of rhTRIM5α abolished the restriction of HIV-1 virus. Further, knockdown of SUMO-1 in rhTRIM5α expressing cells abolished restriction of HIV-1. These results may be due, in part, to the ability of SUMO-1 to stabilize rhTRIM5α protein expression, as SUMO-1 knockdown increased rhTRIM5α turnover and the mutations in SIM1 and SIM2 led to more rapid degradation than the wild type protein. The NF-κB signaling ability of rhTRIM5α was also attenuated by SUMO-1 knockdown. Finally, upon inhibition of CRM1-dependent nuclear export with Leptomycin B (LMB), wild type rhTRIM5α localized to SUMO-1 bodies in the nucleus, while the SIM1 and SIM2 mutants did not localize to SUMO-1. Conclusions: Our results suggest that the rhTRIM5α B30.2/SPRY domain is not only important for the recognition of the HIV-1 CA, but it is also important for its association with SUMO-1 or SUMO-1 modified proteins. These interactions help to maintain TRIM5α protein levels and its nuclear localization into specific nuclear bodies.