Examinando por Autor "Blanco-Herrera, F."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Modulation of Auxin Levels in Pollen Grains Affects Stamen Development and Anther Dehiscence in Arabidopsis(MDPI AG, 2018-09) Salinas-Grenet, H.; Herrera-Vásquez, A.; Parra, S.; Cortez, A.; Gutiérrez, L.; Pollmann, S.; León, G.; Blanco-Herrera, F.Auxin regulates diverse aspects of flower development in plants, such as differentiation of the apical meristem, elongation of the stamen, and maturation of anthers and pollen. It is known that auxin accumulates in pollen, but little information regarding the biological relevance of auxin in this tissue at different times of development is available. In this work, we manipulated the amount of free auxin specifically in developing pollen, using transgenic Arabidopsis lines that express the bacterial indole-3-acetic acid-lysine synthetase (iaaL) gene driven by a collection of pollen-specific promoters. The iaaL gene codes for an indole-3-acetic acid-lysine synthetase that catalyzes the conversion of free auxin into inactive indole-3-acetyl-L-lysine. The transgenic lines showed several abnormalities, including the absence of short stamina, a diminished seed set, aberrant pollen tubes, and perturbations in the synchronization of anther dehiscence and stamina development. This article describes the importance of auxin accumulation in pollen and its role in stamina and anther development. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.Ítem Molecular and Genomic Characterization of the Pseudomonas syringae Phylogroup 4: An Emerging Pathogen of Arabidopsis thaliana and Nicotiana benthamiana(MDPI, 2022-03) Zavala, D.; Fuenzalida, I.; Gangas, M.; Peppino, M.; Bartoli, C.; Roux, F.; Meneses, C.; Herrera-Vásquez, A.; Blanco-Herrera, F.Environmental fluctuations such as increased temperature, water availability, and air CO2 concentration triggered by climate change influence plant disease dynamics by affecting hosts, pathogens, and their interactions. Here, we describe a newly discovered Pseudomonas syringae strain found in a natural population of Arabidopsis thaliana collected from the southwest of France. This strain, called Psy RAYR-BL, is highly virulent on natural Arabidopsis accessions, Arabidopsis model accession Columbia 0, and tobacco plants. Despite the severe disease phenotype caused by the Psy RAYR-BL strain, we identified a reduced repertoire of putative Type III virulence effectors by genomic sequencing compared to P. syringae pv tomato (Pst) DC3000. Furthermore, hopBJ1Psy is found exclusively on the Psy RAYR-BL genome but not in the Pst DC3000 genome. The plant expression of HopBJ1Psy induces ROS accumulation and cell death. In addition, HopBJ1Psy participates as a virulence factor in this plant-pathogen interaction, likely explaining the severity of the disease symptoms. This research describes the characterization of a newly discovered plant pathogen strain and possible virulence mechanisms underlying the infection process shaped by natural and changing environmental conditions.Ítem Molecular and Genomic Characterization of the Pseudomonas syringae Phylogroup 4: An Emerging Pathogen of Arabidopsis thaliana and Nicotiana benthamiana(MDPI, 2022-03) Zavala, D.; Fuenzalida, I.; Gangas, M.; Peppino Margutti, M.; Bartoli, C.; Roux, F.; Meneses, C.; Herrera-Vásquez, A.; Blanco-Herrera, F.Environmental fluctuations such as increased temperature, water availability, and air CO2 concentration triggered by climate change influence plant disease dynamics by affecting hosts, pathogens, and their interactions. Here, we describe a newly discovered Pseudomonas syringae strain found in a natural population of Arabidopsis thaliana collected from the southwest of France. This strain, called Psy RAYR-BL, is highly virulent on natural Arabidopsis accessions, Arabidopsis model accession Columbia 0, and tobacco plants. Despite the severe disease phenotype caused by the Psy RAYR-BL strain, we identified a reduced repertoire of putative Type III virulence effectors by genomic sequencing compared to P. syringae pv tomato (Pst) DC3000. Furthermore, hopBJ1Psy is found exclusively on the Psy RAYR-BL genome but not in the Pst DC3000 genome. The plant expression of HopBJ1Psy induces ROS accumulation and cell death. In addition, HopBJ1Psy participates as a virulence factor in this plant-pathogen interaction, likely explaining the severity of the disease symptoms. This research describes the characterization of a newly discovered plant pathogen strain and possible virulence mechanisms underlying the infection process shaped by natural and changing environmental conditions.