Examinando por Autor "Eltit, Felipe"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Endothelial dysfunction in pregnancy metabolic disorders(Elsevier B.V., 2020-02) Echeverria, Cesar; Eltit, Felipe; Santibanez, Juan F; Gatica, Sebastian; Cabello-Verrugio, Claudio; Simon, FelipeIn recent years, the vascular endothelium has gained attention as a key player in the initiation and development of pregnancy disorders. Endothelium acts as an endocrine organ that preserves the homeostatic balance by responding to changes in metabolic status. However, in metabolic disorders, endothelial cells adopt a dysfunctional function, losing their normal responsiveness. During pregnancy, several metabolic changes occur, in which endothelial function decisively participates. Similarly, when pregnancy metabolic disorders occur, endothelial dysfunction plays a key role in pathogenesis. This review outlines the main findings regarding endothelial dysfunction in three main metabolic pathological conditions observed during pregnancy: gestational diabetes, hypertensive disorders, and obesity and hyperlipidemia. Organ, histological and cellular characteristics were thoroughly described. Also, we focused in discussing the underlying molecular mechanisms involved in the cellular signaling pathways that mediate responses in these pathological conditions. © 2019 Elsevier B.V.Ítem Sepsis-Induced Coagulopathy Phenotype Induced by Oxidized High-Density Lipoprotein Associated with Increased Mortality in Septic-Shock Patients(MDPI, 2023-02) Prado, Yolanda; Tapia, Pablo; Eltit, Felipe; Reyes-Martínez, Cristian; Feijóo, Carmen G.; Llancalahuen, Felipe M.; Riedel, Claudia A.; Cabello-Verrugio, Claudio; Stehberg, Jimmy; Simon, FelipeSepsis syndrome is a highly lethal uncontrolled response to an infection, which is characterized by sepsis-induced coagulopathy (SIC). High-density lipoprotein (HDL) exhibits antithrombotic activity, regulating coagulation in vascular endothelial cells. Sepsis induces the release of several proinflammatory molecules, including reactive oxygen species, which lead to an increase in oxidative stress in blood vessels. Thus, circulating lipoproteins, such as HDL, are oxidized to oxHDL, which promotes hemostatic dysfunction, acquiring prothrombotic properties linked to the severity of organ failure in septic-shock patients (SSP). However, a rigorous and comprehensive investigation demonstrating that oxHDL is associated with a coagulopathy-associated deleterious outcome of SSP, has not been reported. Thus, we investigated the participation of plasma oxHDL in coagulopathy-associated sepsis pathogenesis and elucidated the underlying molecular mechanism. A prospective study was conducted on 42 patients admitted to intensive care units, (26 SSP and 16 non-SSP) and 39 healthy volunteers. We found that an increased plasma oxHDL level in SSP was associated with a prothrombotic phenotype, increased mortality and elevated risk of death, which predicts mortality in SSP. The underlying mechanism indicates that oxHDL triggers an endothelial protein expression reprogramming of coagulation factors and procoagulant adhesion proteins, to produce a prothrombotic environment, mainly mediated by the endothelial LOX-1 receptor. Our study demonstrates that an increased plasma oxHDL level is associated with coagulopathy in SSP through a mechanism involving the endothelial LOX-1 receptor and endothelial protein expression regulation. Therefore, the plasma oxHDL level plays a role in the molecular mechanism associated with increased mortality in SSP. © 2023 by the authors.