Examinando por Autor "Hayes C.R."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem A Perspective on the Milky Way Bulge Bar as Seen from the Neutron-capture Elements Cerium and Neodymium with APOGEE(Institute of Physics, 2024-04-01) Sales-Silva J.V.; Cunha K.; Smith V.V.; Daflon S.; Souto D.; Guerço R.; Queiroz A.; Chiappini C.; Hayes C.R.; Masseron T.; Hasselquist, Sten; Horta D.; Prantzos N.; Zoccali M.; Allende Prieto C.; Barbuy B.; Beaton R.; Bizyaev D.; Fernández-Trincado J.G.; Frinchaboy P.M.; Holtzman J.A.; Johnson J.A.; Jönsson, Henrik; Majewski S.R.; Minniti D.; Nidever D.L.; Schiavon R.P.; Schultheis M.; Sobeck J.; Stringfellow G.S.; Zasowski G.This study probes the chemical abundances of the neutron-capture elements cerium and neodymium in the inner Milky Way from an analysis of a sample of ∼2000 stars in the Galactic bulge bar spatially contained within ∣X Gal∣ < 5 kpc, ∣Y Gal∣ < 3.5 kpc, and ∣Z Gal∣ < 1 kpc, and spanning metallicities between −2.0 ≲ [Fe/H] ≲ +0.5. We classify the sample stars into low- or high-[Mg/Fe] populations and find that, in general, values of [Ce/Fe] and [Nd/Fe] increase as the metallicity decreases for the low- and high-[Mg/Fe] populations. Ce abundances show a more complex variation across the metallicity range of our bulge-bar sample when compared to Nd, with the r-process dominating the production of neutron-capture elements in the high-[Mg/Fe] population ([Ce/Nd] < 0.0). We find a spatial chemical dependence of Ce and Nd abundances for our sample of bulge-bar stars, with low- and high-[Mg/Fe] populations displaying a distinct abundance distribution. In the region close to the center of the MW, the low-[Mg/Fe] population is dominated by stars with low [Ce/Fe], [Ce/Mg], [Nd/Mg], [Nd/Fe], and [Ce/Nd] ratios. The low [Ce/Nd] ratio indicates a significant contribution in this central region from r-process yields for the low-[Mg/Fe] population. The chemical pattern of the most metal-poor stars in our sample suggests an early chemical enrichment of the bulge dominated by yields from core-collapse supernovae and r-process astrophysical sites, such as magnetorotational supernovae.Ítem Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns(Institute of Physics Publishing, 2017-09) Fernández-Trincado J.G.; Zamora O.; Garcia-Hernández D.A.; Souto, Diogo; Dell'Agli F.; Schiavon R.P.; Geisler D.; Tang B.; Villanova S.; Hasselquist, Sten; Mennickent R.E.; Cunha, Katia; Shetrone M.; Prieto, Carlos Allende; Vieira K.; Zasowski G.; Sobeck J.; Hayes C.R.; Majewski S.R.; Placco V.M.; Beers T.C.; Schleicher D.R.G.; Robin A.C.; Mészáros, Sz.; Masseron T.; Pérez, Ana E. Garcia; Anders F.; Meza A.; Alves-Brito A.; Carrera R.; Minniti D.; Lane R.R.; Fernández-Alvar E.; Moreno E.; Pichardo B.; Pérez-Villegas A.; Schultheis M.; Roman-Lopes A.; Fuentes C.E.; Nitschelm C.; Harding P.; Bizyaev D.; Pan K.; Oravetz D.; Simmons A.; Ivans, Inese; Blanco-Cuaresma S.; Hernández J.; Alonso-Garcia J.; Valenzuela O.; Chanamé J.We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] -1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution. © 2017. The American Astronomical Society. All rights reserved.