Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

No hay miniatura disponible
Profesor/a Guía
Título de la revista
ISSN de la revista
Título del volumen
Institute of Physics Publishing
Nombre de Curso
Licencia CC
CC BY 4.0 DEED Atribución 4.0 Internacional
Licencia CC
We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] -1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution. © 2017. The American Astronomical Society. All rights reserved.
Palabras clave
globular clusters: general, stars: abundances, stars: Population II, structure
Astrophysical Journal Letters Volume 846, Issue 11 September 2017 Article number L2
Link a Vimeo