FCE - Artículos de Revista

Examinar

Envíos recientes

Mostrando 1 - 20 de 1413
  • Ítem
    Experimental measurements of high-energy photons in X-rays pulses emitted from a hundred joules plasma focus device and its interpretations
    (Elsevier, 2020-03) Jain, J.; Moreno, J.; Davis, S.; Bora, B.; Pavez, C.; Avaria, G,; Soto, L.
    In the present work, efforts are made to identify the presence of high energy photons in X-rays pulses, emitted from a hundred joules plasma focus device, PF-400J. Two different experiments were carried out, with the insertion of a lead piece inside the hollow anode of PF-400J and without insertion of the lead piece. A pair of two photomultiplier tubes (PMTs) was mounted in the axial direction and a similar pair of PMTs was mounted in the radial direction, simultaneously. After establishing a correlation between two PMTs in each pair, one of the PMTs in both directions was blocked by a rectangular slab of the lead of thickness ~17 mm. Linear attenuation coefficient (LAC) of lead was estimated using the PMTs signals. Later, the X-rays energies were interpolated for the estimated LAC values in both cases, with and without insertion of lead piece inside the hollow anode. Interpolated energies reveal the presence of 0.55–0.85 MeV photons in the X-rays pulses in the axial direction, while, in radial direction ranges 0.4–0.9 MeV, for the case without lead inserted inside the hollow anode. Insertion of the lead inside the hollow anode does not change the X-rays energies significantly, nonetheless, it increases X-rays repetition rate per hundred discharges. The presence of high energy photons in the X-rays pulses indicates the existence of relativistic electrons. To explain it, induced electric and magnetic fields were estimated using generalized Ohm’s law. We conclude that the electron acceleration mechanisms might not be the same in the axial and radial directions.
  • Ítem
    Model of Thomson scattering from z-pinch plasma: Application in experimental design for Plasma Focus
    (Elsevier, 2022-09) Zorondo, M.; Pavez, C.; Muñoz, V.
    The present work develops a model of Thomson scattering (TS) for z-pinch plasmas. Sustained on the phenomenology observed in dynamical-pinch discharges of interest in fusion studies, the plasma dynamics is modeled by axisymmetric bi-Maxwellian velocity distribution with axial and radial drift velocities. Expressions for TS form factor and screening integrals are deduced, and TS spectra are reconstructed. A characteristic temperature of the spectrum is identified, which is determined by a weighted-sum of the axial and radial temperatures, whose coefficients are given by the square of the respective axial and radial components of over the square of the magnitude of . It is shown that it is not possible to determine the velocity distribution function of the plasma from just one direction of measurement. Additionally, an experimental setup, which requires two complementary observation directions for a complete determination of the proposed distribution function, is analyzed and its capacity to measure thermal anisotropy and drift velocities is studied for plasma conditions expected in the pinch phase of a plasma focus discharge.
  • Ítem
    Large Immersions in Graphs with Independence Number 3 and 4
    (Elsevier, 2019-08) Bustamante, S.; Quiroz, D.; Stein, M.; Zamora, J.
    The analogue of Hadwiger's conjecture for the immersion order, a conjecture independently posed by Lescure and Meyniel, and by Abu-Khzam and Langston, states that every graph G which does not contain the complete graph Kt+1 as an immersion satisfies χ(G) ≤ t. If true, this conjecture would imply that every graph with n vertices and independence number α contains as an immersion (and if α = 2, the two statements are known to be equivalent). The immersion conjecture has been tackled with more success than its graph minors counterpart: not only is a linear upper bound known for the chromatic number of Kt+1-immersion-free graphs, but the best bound currently known is very close to optimal. Namely, the currently best bound in this respect is due to Gauthier, Le and Wollan, who recently proved that every graph not containing Kt+1 as an immersion satisfies χ(G) ≤ 3.54t + 7. Their result implies that any graph with n vertices and independence number α contains as an immersion, where c < 1.98. Moreover, the same authors prove that every graph of independence number 2 contains as an immersion. We show that any graph with n vertices and independence number 3 contains a clique immersion on at least vertices, and any graph with n vertices and independence number 4 contains a clique immersion on at least vertices. Thus, comparing to the bound from above, in both cases we roughly double the size of the immersion obtained.
  • Ítem
    Exploring CP-violating heavy neutrino oscillations in rare tau decays at Belle II
    (Elsevier, 2020-03) Tapia, S.; Zamora-Saá, J.
    In this work, we study the lepton number violating tau decays via two intermediate on-shell Majorana neutrinos into two charged pions and a charged lepton . We consider the scenario where the heavy neutrino masses are within . We evaluated the possibility to measure the modulation of the decay width along the detector length for these processes at tau factories, such as Belle II. We study some realistic conditions which could lead to the observation of this phenomenon at futures τ factories.
  • Ítem
    Closed-shell d10–d10 in [AuCl(CNR)]n and [AuCl(CO)]n (n = 1, 2; R = –H, –CH3, –Cy) complexes: quantum chemistry study of their electronic and optical properties
    (The Royal Society of Chemistry, 2022-03) Mendizabal, F.; Miranda-Rojas, S.
    The electronic structure and spectroscopic properties of [AuCl(CNR)] and [AuCl(CO)] (R = –H, –CH3, –Cy) complexes with d10–d10 type interactions were studied at the post-Hartree–Fock (MP2, SCS-MP2, CCSD(T)) and density functional theory levels. It was found that the nature of the intermetal interactions is consistent with the presence of an electrostatic (dipole–dipole) contribution and a dispersion-type interaction. The absorption spectra of these complexes were calculated using the single excitation time-dependent (TD) method at the DFT and SCS-CC2 levels. The calculated values are in agreement with the experimental range, where the absorption and emission energies reproduce the experimental trends, with large Stokes shifts. According to this, intermetallic interactions were found to be mainly responsible for the metal–metal charge transfer (MMCT) electronic transitions among the models studied. The [AuCl(CNR)] and [AuCl(CO)] (R = –H, –CH3, –Cy) complexes were modeled and their electronic and optical properties described.
  • Ítem
    A molecular electron density theory study of hydrogen bond catalysed polar Diels–Alder reactions of α,β-unsaturated carbonyl compounds
    (Elsevier, 2024-06) Domingo, L.; Pérez, P.; Ríos-Gutiérrez, M.; Aurell, M.
    The hydrogen bond (HB) catalysed Diels-Alder (DA) reactions of acrolein with cyclopentadiene have been investigated within the Molecular Electron Density Theory (MEDT) at the ωB97X-D/6-311G(d,p) computational level. The formation of HBs increases the electrophilicity of these species, suggesting an acceleration of these polar Diels-Alder (P-DA) reactions with forward electron density flux. Formation of one or two HBs with acrolein decreases the activation energies of the HB-catalysed P-DA reactions by 1.7 (methanol) and 4.0 (squaramide) kcal·mol−1, with the corresponding DA reactions exhibiting low endo stereoselectivity. These HB-catalysed DA reactions proceed through non-concerted one-step mechanisms via asynchronous transition state structures (TSs). An Interacting Quantum Atoms (IQA) energy partitioning analysis of the TSs indicates that the intra-atomic stabilization of the acrolein framework, coupled with the increase of the global electron density transfer, plays a crucial role in reducing the activation energies of these HB-catalysed DA reactions.
  • Ítem
    Fecal Metagenomes and Metagenome-Assembled Genomes from the South American Sea Lion (Otaria flavescens) from the Comau Fjord (42°S), Patagonia
    (American Society for Microbiology, 2023) Guajardo-Leiva, S.; Berríos-Farías, V.; Bermúdez, F.; Castro-Nallar, E.; Stewart, F. (Editor)
    Environmental disturbances can be monitored using sentinel species. We present 30 temporally explicit metagenomes and 166 metagenome-assembled genomes (MAGs) from the gut of the South American sea lion (Otaria flavescens) to further understanding of whether variations in the gut microbiome composition and gene content might reflect environmental disturbances from salmon farming.
  • Ítem
    Tuning the electronic, photophysical and charge transfer properties of small D-A molecules based on Thienopyrazine-terthienyls by changing the donor fragment: A DFT study
    (Sociedad Chilena de Quimica, 2017) Aicha, Youssef Ait; Bouzzine, Si Mohamed; Zair, Touriya; Bouachrine, Mohammed; Hamidi, Mohamed; Salgado-Morán, Guillermo; Tagle, R. Ramirez; Mendoza-Huizar, Luis H.
    Four acceptor-donor organic conjugated molecules based on thieno[3,4-b]pyrazine-terthienyls were analyzed in order to explore the effect of the donor substituent on their molecular structures, electronic and optical properties. Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD/DFT) calculations were carried out employing the B3LYP hybrid functional in combination with the 6-31G(d,p) basis set. The results suggests that the addition of electron-donating substituents to the conjugated molecules can diminish their energy gap value, which is beneficial to the photon harvesting. The lowest-lying absorption spectra of compounds substituted with electron donor groups exhibited a red-shift and a high oscillation factor compared with the unsubstituted molecule. Additionally, the ionization potential (IP), electron affinity (EA), reorganization energy (λ) and open-circuit voltage (Voc) of the molecules were evaluated. According to these values, the molecules show good photovoltaic properties, and efficient charge transfer for hole and electron and balanced charges.
  • Ítem
    How the electron-deficient cavity of heterocalixarenes recognizes anions: Insights from computation
    (Royal Society of Chemistry, 2017) Ortolan, Alexandre O.; Caramori, Giovanni F.; Matthias Bickelhaupt F.; Parreira, Renato L. T.; Muñoz-Castro, Alvaro; Kar, Tapas
    We have quantum chemically analyzed the bonding mechanism behind the affinity of various heterocalixarenes for anions with a range of geometries and net charges, using modern dispersion-corrected density functional theory (DFT-D3BJ). The purpose is to better understand the physical factors that are responsible for the computed affinities and thus to develop principles for a more rational design of anion receptors. Our model systems comprise heterocalixarenes 1-4 as hosts, which are characterized by different bridging heteroatoms (O, N, S) as well as the anionic guests Cl-, Br-, I-, BF4-, CH3CO2-, H2PO4-, HSO4-, NCS-, NO3-, PF6-, and SO42-. We use various analysis schemes (EDA, NCI, and NBO) to elucidate the interactions between the calixarene cavity and the anions to probe the importance of the different bonding modes (anion-π, lone-pair electron-π, σ-complexes, hydrogen bonds, and others) of the interactions. Electrostatic interactions appear to be dominant for heterocalixarenes with oxygen bridges whereas orbital interactions prevail in the case of nitrogen and sulfur bridges. Dispersion interactions are however in all cases non-negligible. © 2017 the Owner Societies.
  • Ítem
    Exploration of the potential energy surface in mixed Zintl clusters applying an automatic Johnson polyhedra generator: the case of arachno E6M24− (E = Si, Ge, Sn; M = Sb, Bi) †
    (Royal Society of Chemistry, 2023) Báez-Grez, R.; Inostroza, D.; Vásquez-Espinal, A.; Islas, R.; Pino-Rios, R.
    A new algorithm called Automatic Johnson Cluster Generator (AJCG) is presented, which, as its name indicates, allows the definition of the desired Johnson polyhedron to subsequently carry out all the possible permutations between the atoms that form this polyhedron. This new algorithm allows the exhaustive study of the structures' potential energy surface (PES). In addition, the AJCG algorithm is helpful for the study of three-dimensional compounds such as boranes or Zintl clusters and their structural derivatives with two or more different atoms. The automatic filling of vertices is particularly useful in mixed compounds because of the possibility of taking into account all possible configurations in the structure. As a test system, we investigated the arachno-type E6M24− (E = Si, Ge, Sn; M = Sb, Bi) structure which has eight vertices and complies with Wade–Mingos rules. Initially, we defined a bipyramidal structure (10 vertices), and filled the vertices with the atoms in all possible configurations. Since the selected system has eight atoms, the two remaining vertices were filled with pseudo atoms to complete the structure. After re-optimizing the initial population generated with AJCG, a large number of isomers with energy below 10 kcal mol−1 are identified. These results show that the most stable isomers possess homonuclear M–M bonds, except Sn6Bi24−. Although the overall putative minima differ at the PBE0-D3 and DLPNO-CCSD(T) levels, they are always competitive minima. In addition to using high-precision methodologies to correctly study relative energies, applying solvent effects in highly charged systems becomes mandatory. The aromatic character of these studied systems was demonstrated qualitatively with two- and three-dimensional mapping and quantitatively by calculating the value of the z-component of the induced magnetic field at the cage center, including scalar and spin–orbit correction for relativistic effects. The compounds studied have a high degree of aromaticity, which allows us to establish that despite structural modifications (i.e., from closo to arachno), the aromaticity is preserved. A new algorithm is introduced, Automatic Johnson Cluster Generator (AJCG), which allows the systematic exploration of three-dimensional compounds such as boranes or Zintl clusters and their structural derivatives with two or more different atoms.
  • Ítem
    Extremely metal-poor stars in the Fornax and Carina dwarf spheroidal galaxies
    (EDP Sciences, 2024-09) Lucchesi R.; Jablonka P.; Skúladóttir Á.; Lardo C.; Mashonkina L.; Primas F.; Venn K.; Hill V.; Minniti D.
    We present our analysis of VLT/UVES and X-shooter observations of six very metal-poor stars, including four stars at [Fe/H] ≈ -3 in the Fornax and Carina dwarf spheroidal (dSph) galaxies. To date, this metallicity range in these two galaxies has not yet been investigated fully, or at all in some cases. The chemical abundances of 25 elements are presented, based on 1D and local thermodynamic equilibrium (LTE) model atmospheres. We discuss the different elemental groups, and find that α- and iron-peak elements in these two systems are generally in good agreement with the Milky Way halo at the same metallicity. Our analysis reveals that none of the six stars we studied exhibits carbon enhancement, which is noteworthy given the prevalence of carbon-enhanced metal-poor stars without s-process enhancement (CEMP-no) in the Galaxy at similarly low metallicities. Our compilation of literature data shows that the fraction of CEMP-no stars in dSph galaxies is significantly lower than in the Milky Way, and than in ultra-faint dwarf galaxies. Furthermore, we report the discovery of the lowest metallicity, [Fe/H] = -2.92, r-process rich (r-I) star in a dSph galaxy. This star, fnx-06-019, has [Eu/Fe] = +0.8, and also shows enhancement of La, Nd, and Dy, [X/Fe] > +0.5. Our new data in Carina and Fornax help populate the extremely low metallicity range in dSph galaxies, and add to the evidence of a low fraction of CEMP-no stars in these systems.
  • Ítem
    MINCE: II. Neutron capture elements
    (EDP Sciences, 2024-06) François P.; Cescutti G.; Bonifacio P.; Caffau E.; Monaco L.; Steffen M.; Puschnig J.; Calura F.; Cristallo S.; Di Marcantonio P.; Dobrovolskas V.; Franchini M.; Gallagher A.J.; Hansen C.J.; Korn A.; Kučinskas A.; Lallement R.; Lombardo L.; Lucertini F.; Magrini L.; Matas Pinto A.M.; Matteucci F.; Mucciarelli A.; Sbordone L.; Spite M.; Spitoni E.; Valentini M.
    Context. Most of the studies on the determination of the chemical composition of metal-poor stars have been focused on the search of the most pristine stars, searching for the imprints of the ejecta of the first supernovae. Apart from the rare and very interesting r-enriched stars, few elements are measurable in the very metal-poor stars. On the other hand, a lot of work has been done also on the thin-disc and thick-disc abundance ratios in a metallicity range from [Fe/H]> -1.5 dex to solar. In the available literature, the intermediate metal-poor stars (-2.5<[Fe/H]< -1.5) have been frequently overlooked. The MINCE (Measuring at Intermediate metallicity Neutron-Capture Elements) project aims to gather the abundances of neutron-capture elements but also of light elements and iron peak elements in a large sample of giant stars in this metallicity range. The missing information has consequences for the precise study of the chemical enrichment of our Galaxy in particular for what concerns neutron-capture elements and it will be only partially covered by future multi object spectroscopic surveys such as WEAVE and 4MOST. Aims. The aim of this work is to study the chemical evolution of galactic sub-components recently identified (i.e. Gaia Sausage Enceladus (GSE), Sequoia). Methods. We used high signal-to-noise ratios, high-resolution spectra and standard 1D LTE spectrum synthesis to determine the detailed abundances. Results. We could determine the abundances for up to 10 neutron-capture elements (Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm and Eu) in 33 stars. The general trends of abundance ratios [n-capture element/Fe] versus [Fe/H] are in agreement with the results found in the literature. When our sample is divided in sub-groups depending on their kinematics, we found that the run of [Sr/Ba] versus [Ba/H] for the stars belonging to the GSE accretion event shows a tight anti-correlation. The results for the Sequoia stars, although based on a very limited sample, shows a [Sr/Ba] systematically higher than the [Sr/Ba] found in the GSE stars at a given [Ba/H] hinting at a different nucleosynthetic history. Stochastic chemical evolution models have been computed to understand the evolution of the GSE chemical composition of Sr and Ba. The first conclusions are that the GSE chemical evolution is similar to the evolution of a dwarf galaxy with galactic winds and inefficient star formation. Conclusions. Detailed abundances of neutron-capture elements have been measured in high-resolution, high signal-to-noise spectra of intermediate metal-poor stars, the metallicity range covered by the MINCE project. These abundances have been compared to detailed stochastic models of galactic chemical evolution.
  • Ítem
    High-precision astrometry with VVV II. A near-infrared extension of Gaia into the Galactic plane
    (EDP Sciences, 2024-07) Griggio M.; Libralato M.; Bellini A.; Bedin L.R.; Anderson J.; Smith L.C.; Minniti D.
    Aims. We use near-infrared, ground-based data from the VISTA Variables in the Via Lactea (VVV) survey to indirectly extend the astrometry provided by the Gaia catalog to objects in heavily extinct regions toward the Galactic bulge and plane that are beyond Gaia’s reach. Methods. We made use of state-of-the-art techniques developed for high-precision astrometry and photometry with the Hubble Space Telescope to process the VVV data. We employed empirical, spatially variable, effective point spread functions and local transformations to mitigate the effects of systematic errors, like residual geometric distortion and image motion, and to improve measurements in crowded fields and for faint stars. We also anchored our astrometry to the absolute reference frame of Gaia Data Release 3. Results. We measure between 20 and 60 times more sources than Gaia in the region surrounding the Galactic center, obtaining a single-exposure precision of about 12 mas and a proper-motion precision of better than 1 mas yr−1 for bright, unsaturated sources. Our astrometry provides an extension of Gaia into the Galactic center. We publicly release the astro-photometric catalogs of the two VVV fields considered in this work, which contain a total of ∼3.5 million sources. Our catalogs cover ∼3 sq. deg, about 0.5% of the entire VVV survey area.
  • Ítem
    Over 200 globular clusters in the Milky Way and still none with super-Solar metallicity
    (EDP Sciences, 2024-07) Garro E.R.; Minniti D.; Fernández-Trincado J.G.
    Context. A large number of globular clusters in the Milky Way have been studied in recent years, especially in hidden regions such as those of the Galactic bulge. Aims. The main goal of this work is to understand what we can learn if we include these new objects into the Milky Way globular cluster (GC) system that we know today. We compiled a catalog of 37 recently discovered globular clusters. Most of them are located in the Galactic bulge, but we also included some of the GCs for comparison. Methods. We used a range of distributions for investigating the Galactic GC system based on the metallicity, luminosity function, and age. We considered three samples. We first treated the new GC sample separately from the known and well characterized GCs. Consequently, we merged these two samples, thereby upgrading the Milky Way GC system. Furthermore, we performed a comparison between our clusters sample and the field star population. Results. We found a double-peaked distribution for the luminosity function, which shows an elongated faint end tail. Considering the “merged” sample, the luminosity function peaks at MVup = −7.00 ± 1.3 mag and at MVup = −4.1 ± 0.48 mag. The metallicity distributions also display a bimodality trend. In this case, we compare our new sample compilation with previously published ones, finding that the distributions are in good general agreement. We also constructed the metallicity distribution for the field star sample and, by comparing it with that of the GCs, we learned that a high percentage of field stars show [Fe/H] > 0; whereas we did not detect any GCs in the same metallicity range. To understand this inconsistency, we constructed the age–metallicity diagram for both samples, noting that the old and metal-poor population (age ≥ 8 Gyr and [Fe/H] ≤ −1.0) is represented by Gcs, while the young and metal-rich population (age < 8 Gyr and [Fe/H] > −1.0) corresponds to field stars. Conclusions. From the analysis of the GC luminosity function and metallicity distribution, we can conclude that many GCs, probably those that are very faint, have survived strong dynamical processes that are typical of the bulge regions. Moreover, we cannot exclude the possibility that some of them have been accreted during past merging events, especially the metal-poor component, whereas the metal-rich population may be related to the formation of the bulge and/or disk. Finally, the difference that we notice between the cluster and field star samples should be explored in the context of the evolutionary differences among these two stellar populations.
  • Ítem
    Possible origins of anomalous Ha I gas around MHONGOOSE galaxy, NGC 5068
    (EDP Sciences, 2024-07) Healy J.; De Blok W.J.G.; Maccagni F.M.; Amram P.; Chemin L.; Combes F.; Holwerda B.W.; Kamphuis P.; Pisano D.J.; Schinnerer E.; Spekkens K.; Verdes-Montenegro L.
    The existing reservoirs of neutral atomic hydrogen gas (HI) in galaxies are insufficient to have maintained the observed levels of star formation without some kind of replenishment. This refuelling of the H I reservoirs is likely to occur at column densities an order of magnitude lower than previous observational limits (NHI, limit ∼ 1019 cm-2 at a 30″ resolution over a linewidth of 20 km s-1). In this paper, we present recent deep HI observations of NGC 5068, a nearby isolated star-forming galaxy observed by MeerKAT as part of the MHONGOOSE survey. With these new data, we were able to detect low column density HI around NGC 5068 with a 3σ detection limit of NHI = 6.4 × 1017 cm-2 at a 90″ resolution over a 20 km s-1 linewidth. The high sensitivity and resolution of the MeerKAT data reveal a complex morphology of the HI in this galaxy, a regularly rotating inner disk coincident with the main star-forming disk of the galaxy, a warped outer disk of low column density gas (NHI < 9 × 1019 cm-2), in addition to clumps of gas on the north-western side of the galaxy. We employed a simple two disk model that described the inner and outer disks, which enabled us to identify anomalous gas that deviates from the rotation of the main galaxy. The morphology and the kinematics of the anomalous gas suggest a possible extra-galactic origin. We explore a number of possible origin scenarios that may explain the anomalous gas, and conclude that fresh accretion is the most likely scenario.
  • Ítem
    An impressionist view of V Hydrae: When MATISSE paints asymmetric giant blobs
    (EDP Sciences, 2024-07) Planquart L.; Paladini C.; Jorissen A.; Escorza A.; Pantin E.; Drevon J.; Aringer B.; Baron F.; Chiavassa A.; Cruzalèbes P.; Danchi W.; De Beck E.; Groenewegen M.A.T.; Höfner S.; Hron J.; Khouri T.; Lopez B.; Lykou F.; Montarges M.; Nardetto N.; Ohnaka K.; Olofsson H.; Rau G.; Rosales-Guzmán A.; Sanchez-Bermudez J.; Scicluna P.; Siess L.; Thévenin F.; Van Eck S.; Vlemmings W.H.T.; Weigelt G.; Wittkowski M.
    Context. Asymptotic giant branch (AGB) stars enrich the interstellar medium through their mass loss. The mechanism(s) shaping the circumstellar environment of mass-losing stars is not clearly understood so far. Aims. Our purpose is to study the effect of binary companions located within the first 10 stellar radii from the primary AGB star. In this work, we target the mass-losing carbon star V Hydrae (V Hya) and search for signatures of its companion in the dust-forming region of the atmosphere. Methods. The star was observed in the L and N bands with the VLTI/MATISSE instrument at low spectral resolution. We reconstructed images of the photosphere and surroundings of V Hya using the two bands and compared our interferometric observables with VLTI/MIDI and VISIR archival data. To constrain the dust properties, we used the 1D radiative transfer code DUSTY to model the spectral energy distribution. Results. The star is dominated by dust emission in the L- and N-bands. The MATISSE reconstructed images show asymmetric and elongated structures in both infrared bands. In the L band, we detected an elongated shape of approximately 15 mas that likely is of photospheric origin. In the N band, we found a 20 mas extension northeast from the star and perpendicular to the L-band elongated axis. The position angle and the size of the N-band extension match the prediction of the companion position at the MATISSE epoch. By comparing MATISSE N-band with MIDI data, we deduce that the elongation axis in the N-band has rotated since the previous interferometric measurements 13 yr ago, supporting the idea that the particle enhancement is related to the dusty clump moving along with the companion. The VISIR image confirms the presence of a large-scale dusty circumstellar envelope surrounding V Hya. Conclusions. The MATISSE images unveil the presence of a dust enhancement at the position of the companion. This opens new doors for further analyses of the binary interaction with an AGB component.
  • Ítem
    KRATOS: A large suite of N -body simulations to interpret the stellar kinematics of LMC-like discs
    (EDP Sciences, 2024-08) Jiménez-Arranz O.; Roca-Fàbrega S.; Romero-Gómez M; Luri X.; Bernet M.; McMillan P.J.; Chemin L.
    Context. The Large and Small Magellanic Clouds (LMC and SMC, respectively) are the brightest satellites of the Milky Way (MW), and for the last thousand million years they have been interacting with one another. As observations only provide a static picture of the entire process, numerical simulations are used to interpret the present-day observational properties of these kinds of systems, and most of them have been focused on attempting to recreate the neutral gas distribution and characteristics through hydrodynamical simulations. Aims. We present KRATOS, a comprehensive suite of 28 open-access pure N-body simulations of isolated and interacting LMC-like galaxies designed for studying the formation of substructures in their discs after interaction with an SMC-mass galaxy. The primary objective of this paper is to provide theoretical models that help us to interpret the formation of general structures in an LMC-like galaxy under various tidal interaction scenarios. This is the first paper of a series dedicated to the analysis of this complex interaction. Methods. Simulations are grouped into 11 sets of up to three configurations, with each set containing (1) a control model of an isolated LMC-like galaxy; (2) a model that contains the interaction with an SMC-mass galaxy, and (3) a model where both an SMC-mass and a MW-mass galaxy may interact with the LMC-like galaxy (the most realistic model). In each simulation, we analysed the orbital history between the three galaxies and examined the morphological and kinematic features of the LMC-like disc galaxy throughout the interaction. This includes investigating the disc scale height and velocity maps. When a bar was found to develop, we characterised its strength, length, off-centredness, and pattern speed. Results. The diverse outcomes found in the KRATOS simulations, including the presence of bars, warped discs, and various spiral arm shapes, demonstrate the opportunities they offer to explore a range of LMC-like galaxy morphologies. These morphologies directly correspond to distinct disc kinematic maps, making them well-suited for a first-order interpretation of the LMC's kinematic maps. From the simulations, we note that tidal interactions can: boost the disc scale height; both destroy and create bars; and naturally explain the off-centre stellar bars. The bar length and pattern speed of long-lived bars are not appreciably altered by the interaction. Conclusions. The high spatial, temporal, and mass resolution used in the KRATOS simulations has been shown to be appropriate for the purpose of interpreting the internal kinematics of LMC-like discs, as evidenced by the first scientific results presented in this work.
  • Ítem
    VVVX survey dusts off a new intermediate-age star cluster in the Milky Way disk
    (EDP Sciences, 2024-08) Garro E.R.; Minniti D.; Alonso-García J.; Fernández-Trincado J.G.; Gómez M.; Palma T.; Saito R.K.; Obasi C.
    Context. In the last decade, many new star clusters have been discovered in heavily obscured regions of the Milky Way bulge and disk. Aims. Our primary long-term objective is to seek out additional star clusters in the poorly studied regions of the Milky Way, where detections pose significant challenges. The aim of this pursuit is to finalize the Milky Way's globular and open cluster system census and to gain a comprehensive understanding of both the formation and evolution of these systems and our Galaxy as a whole. Methods. We report the discovery of a new star cluster, named Garro 03. We investigated this new target using a combination of near-infrared and optical databases. We employed the VISTA Variables in the Via Láctea Survey and Two Micron All Sky Survey data in the near-infrared, and the Gaia Data Release 3 and the DECam Plane Survey datasets in the optical passband. We constructed density maps and vector proper motion diagrams in order to highlight our target. We performed a photometrical analysis in order to derive its main physical parameters. Results. Garro 03 is located at equatorial coordinates RA = 14:01:29.3 and Dec = -65:30:57.0. From our photometric analysis we find that this cluster is not heavily affected by extinction with AKs = 0.25 ± 0.04 mag and AG = 1.54 ± 0.02 mag. It is located at heliocentric distance of 14.1 ± 0.5 kpc, which places Garro 03 at 10.6 kpc from the Galactic centre and Z = -0.89 kpc below the Galactic plane. We also calculated the mean cluster proper motion of (μα∗,μδ)=(-4.57 ± 0.29, -1.36 ± 0.27) mas yr-1. We derived an age of 3 Gyr and metallicity [Fe/H] = -0.5 ± 0.2 by the isochrone-fitting method, employing the PARSEC models. The total luminosity was derived in the Ks and V bands, finding MKs = -6.32 ± 1.10 mag and MV = -4.06 mag. Finally, the core and tidal radii were measured constructing the Garro 03 radial density profile and fitting the King model. We obtained rc = 3.07 ± 0.98 pc and rt = 19.36 ± 15.96 pc, respectively. Conclusions. We photometrically confirm the cluster nature for Garro 03, located in the Galactic disk. It is a distant, low-luminosity, metal-rich star cluster of intermediate age. We also searched for possible signatures (streams or bridges) between Garro 03 and Garro 01, but we exclude a companionship with the present analysis. We need spectroscopic data to classify it as an old open cluster or a young globular cluster, and to understand its origin.
  • Ítem
    Signature of systemic rotation in 21 galactic globular clusters from APOGEE-2
    (EDP Sciences, 2024-08) Petralia, Ilaria; Minniti, Dante; Fernández-Trincado, José G.; Lane, Richard R.; Schiavon, Ricardo P.
    Context. Traditionally, globular clusters (GCs) have been assumed to be quasi-relaxed non-rotating systems, characterized by spherical symmetry and orbital isotropy. However, in recent years, a growing set of observational evidence has been unveiling an unexpected dynamical complexity in Galactic GCs. Indeed, kinematic studies have demonstrated that a measurable amount of internal rotation is present in many present-day GCs. Aims. The objective of this work is to analyse the APOGEE-2 value-added catalog (VAC) DR17 data of a sample of 21 GCs to extend the sample exhibiting signatures of systemic rotation and better understand the kinematic properties of GCs overall. Also, we aim to identify the fastest rotating GC from the sample of objects with suitable measurements. Methods. From the sample of 23 GCs included in this work, the presence of systemic rotation was detected in 21 of the GCs, using three different methods. All these methods use the radial velocity referred to the cluster systemic velocity (Ver). Using the first method, it was possible to visually verify the clear-cut signature of systemic rotation; whereas using the second and third methods, it was possible to determine the amplitude of the rotation curve (Arot) and the position angle (PA) of the rotation axis. Results. This study shows that 21 GCs have a signature of systemic rotation. For these clusters, the rotation amplitude and the position angle of the rotation axis (PA0) have been calculated. The clusters cover a remarkable range of rotational amplitudes, from 0.77 km s−1 to 13.85 km s−1 c The Authors 2024.
  • Ítem
    Andres Bello and the dissemination of astronomy: Education and scientific rhetoric
    (CSIC Consejo Superior de Investigaciones Cientificas, 2017) Ramírez Errázuriz, Verónica; Leyton Alvarado, Patricio
    This paper analyzes the astronomical texts written by Andres Bello between 1810 and 1848, from its educational nature to its rhetorical expression, suggesting that their main purpose was to show the advances in the field -in terms of knowledge production and also technology development-in order to improve the material and intellectual environment of the nation. It also stands that astronomy should be tought by activating creativity and imagination, which may be linked with Bello’s willing to avoid science and art develop apart from each other, keeping, in this case astronomy bonded with literature. © 2017 CSIC.