Examinando por Autor "Márquez-Miranda, Valeria"
Mostrando 1 - 7 de 7
Resultados por página
Opciones de ordenación
Ítem Biomimetics: From bioinformatics to rational design of dendrimers as gene carriers(Public Library of Science, 2015-09) Márquez-Miranda, Valeria; Camarada, María Belén; Araya-Durán, Ingrid; Varas-Concha, Ignacio; Almonacid, Daniel Eduardo; González-Nilo, Fernando DaniloBiomimetics, or the use of principles of Nature for developing new materials, is a paradigm that could help Nanomedicine tremendously. One of the current challenges in Nanomedicine is the rational design of new efficient and safer gene carriers. Poly(amidoamine) (PAMAM) dendrimers are a well-known class of nanoparticles, extensively used as nonviral nucleic acid carriers, due to their positively charged end-groups. Yet, there are still several aspects that can be improved for their successful application in in vitro and in vivo systems, including their affinity for nucleic acids as well as lowering their cytotoxicity. In the search of new functional groups that could be used as new dendrimer-reactive groups, we followed a biomimetic approach to determine the amino acids with highest prevalence in protein-DNA interactions. Then we introduced them individually as terminal groups of dendrimers, generating a new class of nanoparticles. Molecular dynamics studies of two systems: PAMAM-Arg and PAMAM-Lys were also performed in order to describe the formation of complexes with DNA. Results confirmed that the introduction of amino acids as terminal groups in a dendrimer increases their affinity for DNA and the interactions in the complexes were characterized at atomic level. We end up by briefly discussing additional modifications that can be made to PAMAM dendrimers to turned them into promising new gene carriers. Copyright: © 2015 Márquez-Miranda et al.Ítem Development of a PHBV nanoparticle as a peptide vehicle for NOD1 activation(Taylor and Francis Ltd., 2021) Cabaña-Brunod, Mauricio; Herrera, Pablo A.; Márquez-Miranda, Valeria; Llancalahuen, Felipe M.; Duarte, Yorley; González-Nilo, Danilo; Fuentes, Juan A.; Vilos, Cristián; Velásquez, Luis; Otero, CarolinaNOD1 is an intracellular receptor that, when activated, induces gene expression of pro-inflammatory factors promoting macrophages and neutrophils recruitment at the infection site. However, iE-DAP, the dipeptide agonist that promotes this receptor's activation, cannot permeate cell membranes. To develop a nanocarrier capable of achieving a high and prolonged activation over time, iE-DAP was encapsulated in nanoparticles (NPs) made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The physicochemical properties, colloidal stability, encapsulation efficiency, and cellular uptake of iE-DAP-loaded PHVB NPs were analyzed. Results evidenced that physicochemical properties of iE-DAP-loaded NPs remained stable over time, and NPs were efficiently internalized into cells, a process that depends on time and concentration. Moreover, our results showed that NPs elicited a controlled cargo release in vitro, and the encapsulated agonist response was higher than its free form, suggesting the possibility of activating intracellular receptors triggering an immune response through the release of NOD1 agonist.Ítem Effect of Several HIV Antigens Simultaneously Loaded with G2-NN16 Carbosilane Dendrimer in the Cell Uptake and Functionality of Human Dendritic Cells(American Chemical Society, 2016-12) Sepúlveda-Crespo, Daniel; Vacas-Córdoba, Enrique; Márquez-Miranda, Valeria; Araya-Durán, Ingrid; Gómez, Rafael; Mata, Francisco Javier De La; González-Nilo, Fernando Danilo; Muñoz-Fernández, Ma ÁngelesDendrimers are highly branched, star-shaped, and nanosized polymers that have been proposed as new carriers for specific HIV-1 peptides. Dendritic cells (DCs) are the most-potent antigen-presenting cells that play a major role in the development of cell-mediated immunotherapy due to the generation and regulation of adaptive immune responses against HIV-1. This article reports on the associated behavior of two or three HIV-derived peptides simultaneously (p24/gp160 or p24/gp160/NEF) with cationic carbosilane dendrimer G2-NN16. We have found that (i) immature DCs (iDCs) and mature (mDCs) did not capture efficiently HIV peptides regarding the uptake level when cells were treated with G2-NN16-peptide complex alone; (ii) the ability of DCs to migrate was not depending on the peptides presence; and (iii) with the use of molecular dynamic simulation, a mixture of peptides decreased the cell uptake of the other peptides (in particular, NEF hinders the binding of more peptides and is especially obstructing of the binding of gp160 to G2-NN16). The results suggest that G2-NN16 cannot be considered as an alternative carrier for delivering two or more HIV-derived peptides to DCs. © 2016 American Chemical Society.Ítem Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake(SPRINGER, 2016-02) Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D.; Otero, CarolinaPoly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes.Ítem Increased Absorption of Thyroxine in a Murine Model of Hypothyroidism Using Water/CO2 Nanobubbles(Multidisciplinary Digital Publishing Institute (MDPI), 2024-06) Opazo, Maria Cecilia; Yañez, Osvaldo; Márquez-Miranda, Valeria; Santos, Johana; Rojas, Maximiliano; Araya-Durán, Ingrid; Aguayo, Daniel; Leal, Matías; Duarte, Yorley; Kohanoff, Jorge; González-Nilo, Fernando D.Thyroxine (T4) is a drug extensively utilized for the treatment of hypothyroidism. However, the oral absorption of T4 presents certain limitations. This research investigates the efficacy of CO2 nanobubbles in water as a potential oral carrier for T4 administration to C57BL/6 hypothyroid mice. Following 18 h of fasting, the formulation was administered to the mice, demonstrating that the combination of CO2 nanobubbles and T4 enhanced the drug’s absorption in blood serum by approximately 40%. To comprehend this observation at a molecular level, we explored the interaction mechanism through which T4 engages with the CO2 nanobubbles, employing molecular simulations, semi-empirical quantum mechanics, and PMF calculations. Our simulations revealed a high affinity of T4 for the water–gas interface, driven by additive interactions between the hydrophobic region of T4 and the gas phase and electrostatic interactions of the polar groups of T4 with water at the water–gas interface. Concurrently, we observed that at the water–gas interface, the cluster of T4 formed in the water region disassembles, contributing to the drug’s bioavailability. Furthermore, we examined how the gas within the nanobubbles aids in facilitating the drug’s translocation through cell membranes. This research contributes to a deeper understanding of the role of CO2 nanobubbles in drug absorption and subsequent release into the bloodstream. The findings suggest that utilizing CO2 nanobubbles could enhance T4 bioavailability and cell permeability, leading to more efficient transport into cells. Additional research opens the possibility of employing lower concentrations of this class of drugs, thereby potentially reducing the associated side effects due to poor absorption.Ítem Molecular determinants for cyclo-oligosaccharide-based nanoparticle-mediated effective siRNA transfection(Future Medicine Ltd., 2017-07) Manzanares, Darío; Araya-Durán, Ingrid; Gallego-Yerga, Laura; Játiva, Pablo; Márquez-Miranda, Valeria; Canan, Jonathan; Jiménez Blanco, José Luis; Mellet, Carmen Ortiz; González-Nilo, Fernando Danilo; García Fernández, José Manuel; Ceña, ValentínAim: To study the structural requirements that a cyclooligosaccharide-based nanoparticle must fulfill to be an efficient siRNA transfection vector. Materials & methods: siRNA protection from degradation by RNAses, transfection efficiency and the thermodynamic parameters of the nanoparticle/siRNA interactions were studied on pairs of amphiphilic molecules using biochemical techniques and molecular dynamics. Results: The lower the siRNA solvent accessible surface area in the presence of the nanoparticle, higher the protection from RNAse-mediated degradation in the corresponding nanocomplex; a moderate nanoparticle/siRNA binding energy value further facilitates reversible complexation and binding to the target cellular mRNA. Conclusion: The use, in advance, of these parameters will provide a useful indication of the potential of a molecular nanoparticle as siRNA transfecting vector. © 2017 Future Medicine Ltd.Ítem Self-Assembly of Amphiphilic Dendrimers: The Role of Generation and Alkyl Chain Length in siRNA Interaction(Nature Publishing Group, 2016-07) Márquez-Miranda, Valeria; Araya-Durán, Ingrid; Camarada, María Belén; Comer, Jeffrey; Valencia-Gallegos, Jesús A.; González-Nilo, Fernando DaniloAn ideal nucleic-acid transfection system should combine the physical and chemical characteristics of cationic lipids and linear polymers to decrease cytotoxicity and uptake limitations. Previous research described new types of carriers termed amphiphilic dendrimers (ADs), which are based on polyamidoamine dendrimers (PAMAM). These ADs display the cell membrane affinity advantage of lipids and preserve the high affinity for DNA possessed by cationic dendrimers. These lipid/dendrimer hybrids consist of a low-generation, hydrophilic dendron (G2, G1, or G0) bonded to a hydrophobic tail. The G2-18C AD was reported to be an efficient siRNA vector with significant gene silencing. However, shorter tail ADs (G2-15C and G2-13C) and lower generation (G0 and G1) dendrimers failed as transfection carriers. To date, the self-assembly phenomenon of this class of amphiphilic dendrimers has not been molecularly explored using molecular simulation methods. To gain insight into these systems, the present study used coarse-grained molecular dynamics simulations to describe how ADs are able to self-assemble into an aggregate, and, specifically, how tail length and generation play a key role in this event. Finally, explanations are given for the better efficiency of G2/18-C as gene carrier in terms of binding of siRNA. This knowledge could be relevant for the design of novel, safer ADs with welloptimized affinity for siRNA.