Examinando por Autor "Massaro F."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem A multifrequency characterization of the extragalactic hard X-ray sky: Presenting the second release of the Turin-SyCAT(EDP Sciences, 2023-02) Kosiba M.; Peña-Herazo H.A.; Massaro F.; Masetti N.; Paggi A.; Chavushyan V.; Bottacini E.; Werner N.Context. Nowadays, we know that the origin of the cosmic X-ray background (CXB) is mainly due to the integrated emission of active galactic nuclei. Therefore, in order to obtain a precise estimate of the contribution of different source classes to the CXB, it is crucial to achieve full characterization of the hard-X ray sky. Aims. We present a multifrequency analysis of all sources listed in the third release of the Palermo Swift-BAT hard X-ray catalog (3PBC) with the goal of (i) identifying and classifying the largest number of sources adopting multifrequency criteria, with particular emphasis on extragalactic populations and (ii) extracting sources belonging to the class of Seyfert galaxies to present here the release of the second version of the Turin-SyCAT. Methods. We outline a classification scheme based on radio, infrared (IR), and optical criteria that allows us to distinguish between unidentified and unclassified hard X-ray sources, as well as to classify those sources belonging to the Galactic and the extragalactic populations. Results. Our revised version of the 3PBC lists 1176 classified, 820 extragalactic, and 356 Galactic sources, as well as 199 unclassified and 218 unidentified sources. According to our analysis, the hard X-ray sky is mainly populated by Seyfert galaxies and blazars. For the blazar population, we report trends between the hard X-ray and the gamma-ray emissions based on the fact that a large fraction of them also have a counterpart detected by the Fermi satellite. These trends are all in agreement with the expectations of inverse Compton models which are widely adopted to explain the blazar broadband emission. For the Seyfert galaxies, we present the second version of the Turin-SyCAT, including a total of 633 Seyfert galaxies, with 282 new sources corresponding to an increase of -80% with respect to the previous release. Comparing the hard X-ray and the infrared emissions of Seyfert galaxies, we confirm that there is no clear difference between the flux distribution of the infrared-to-hard X-ray flux ratio of Seyfert galaxies Type 1 and Type 2. However, there is a significant trend between the mid-IR flux and hard X-ray flux, confirming previous statistical results in the literature. Conclusions. We provide two catalog tables. The first is the revised version of the 3PBC catalog based on our multifrequency analyses. The second catalog table is a release of the second version of the Turin-SyCAT catalog. Finally, we highlight that extensive soft X-ray data are already available in the form of the Swift archive which can be used to search for potential counterparts of unidentified hard X-ray sources. All these datasets will be reduced and analyzed in a forthcoming analysis to determine the precise position of low-energy counterparts in the 0.5 10 keV energy range for 3PBC sources that can be targets of future optical spectroscopic campaigns; this is necessary to obtain their precise classification. © The Authors 2023.Ítem Disentangling the nature of the prototype radio weak BL Lac: Contemporaneous multifrequency observations of WISE J141046.00+740511.2(EDP Sciences, 2023-02) Marchesini E.J.; Reynaldi V.; Vieyro F.; Saponara J.; Andruchow I.; López I.E.; Benaglia P.; Cellone S.A.; Masetti N.; Massaro F.; Peña-Herazo H.A.; Chavushyan V.; Combi J.A.; Acosta-Pulido J.A.; Agís González B.; Castro-Segura N.Context. The γ-ray emitting source WISE J141046.00+740511.2 has been associated with a Fermi-LAT detection by crossmatching with Swift/XRT data. It has shown all the canonical observational characteristics of a BL Lac source, including a power-law, featureless optical spectrum. However, it was only recently detected at radio frequencies and its radio flux is significantly low. Aims. Given that a radio detection is fundamental to associate lower-energy counterparts to Fermi-LAT sources, we aim to unambiguously classify this source by performing a multiwavelength analysis based on contemporaneous data. Methods. By using multifrequency observations at the Jansky Very Large Array, Giant Metrewave Radio Telescope, Gran Telescopio Canarias, Gemini, William Herschel Telescope and Liverpool observatories, together with Fermi-LAT and Swift data, we carried out two kinds of analyses. On one hand, we studied several known parameters that account for the radio loudness or weakness characterization and their application to blazars (in general) and to our source (in particular). And, on the other hand, we built and analyzed the observed spectral energy distribution (SED) of this source to try to explain its peculiar characteristics. Results. The multiwavelength analysis indicates that WISE J141046.00+740511.2 is a blazar of the high-frequency peaked (HBL) type that emits highly polarized light and that is likely located at a low redshift. In addition, the one-zone model parameters that best fit its SED are those of an extreme HBL (EHBL); this blazar type has been extensively predicted in theory to be lacking in the radio emission that is otherwise typical of canonical γ-ray blazars. Conclusions. We confirm that WISE J141046.00+740511.2 is indeed a highly polarized BL Lac of the HBL type. Further studies will be conducted to explain the atypical low radio flux detected for this source. © 2023 The Authors.Ítem Optical spectroscopic observations of gamma-ray blazar candidates. IX. Optical archival spectra and further observations from SOAR and OAGH(Springer Netherlands, 2019-05-01) Peña-Herazo H.A.; Massaro F.; Chavushyan V.; Marchesini E.J.; Paggi A.; Landoni M.; Masetti N.; Ricci F.; D’Abrusco R.; Milisavljevic D.; Jiménez-Bailón E.; La Franca F.; Smith, Howard A.; Tosti G.Nearly one third of the sources in the Fermi-LAT catalogs lacks a lower energy counterpart, hence being referred as unidentified/unassociated gamma-ray sources (UGSs). In order to firmly classify them, dedicated multifrequency follow-up campaigns are necessary. These will permit to unveil their nature and identify the fraction that could belong to the class of active galaxies known as blazars that is the largest population of extragalactic γ-ray sources. In Fermi-LAT catalogs there are also gamma-ray sources associated with multifrequency blazar-like objects known as Blazars Candidates of Uncertain type (i.e., BCUs) for which follow up spectroscopic campaigns are mandatory to confirm their blazar nature. Thus, in 2013 we started an optical spectroscopic campaign to identify blazar-like objects potential counterparts of UGSs and BCUs. Here we report the spectra of 31 additional targets observed as part of our follow up campaign. Thirteen of them are BCUs for which we acquired spectroscopic observations at Observatorio Astrofísico Guillermo Haro (OAGH) and at Southern Astrophysical Research Observatory (SOAR) telescopes, while the rest has been identified thanks to the archival observations available from the Sloan Digital Sky Survey (SDSS). We confirm the blazar nature of all BCUs: three of them are in blazar of quasar type (BZQs) while the remaining ones can be spectroscopically classified as BL Lac objects (BZBs). Then we also discovered 18 BL Lac objects lying within the positional uncertainty regions of UGSs that could be their potential counterparts.