A multifrequency characterization of the extragalactic hard X-ray sky: Presenting the second release of the Turin-SyCAT
No hay miniatura disponible
Archivos
Fecha
2023-02
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
EDP Sciences
Nombre de Curso
Licencia CC
CC BY 4.0 Attribution 4.0 International Deed
Licencia CC
https://creativecommons.org/licenses/by/4.0/
Resumen
Context. Nowadays, we know that the origin of the cosmic X-ray background (CXB) is mainly due to the integrated emission of active galactic nuclei. Therefore, in order to obtain a precise estimate of the contribution of different source classes to the CXB, it is crucial to achieve full characterization of the hard-X ray sky. Aims. We present a multifrequency analysis of all sources listed in the third release of the Palermo Swift-BAT hard X-ray catalog (3PBC) with the goal of (i) identifying and classifying the largest number of sources adopting multifrequency criteria, with particular emphasis on extragalactic populations and (ii) extracting sources belonging to the class of Seyfert galaxies to present here the release of the second version of the Turin-SyCAT. Methods. We outline a classification scheme based on radio, infrared (IR), and optical criteria that allows us to distinguish between unidentified and unclassified hard X-ray sources, as well as to classify those sources belonging to the Galactic and the extragalactic populations. Results. Our revised version of the 3PBC lists 1176 classified, 820 extragalactic, and 356 Galactic sources, as well as 199 unclassified and 218 unidentified sources. According to our analysis, the hard X-ray sky is mainly populated by Seyfert galaxies and blazars. For the blazar population, we report trends between the hard X-ray and the gamma-ray emissions based on the fact that a large fraction of them also have a counterpart detected by the Fermi satellite. These trends are all in agreement with the expectations of inverse Compton models which are widely adopted to explain the blazar broadband emission. For the Seyfert galaxies, we present the second version of the Turin-SyCAT, including a total of 633 Seyfert galaxies, with 282 new sources corresponding to an increase of -80% with respect to the previous release. Comparing the hard X-ray and the infrared emissions of Seyfert galaxies, we confirm that there is no clear difference between the flux distribution of the infrared-to-hard X-ray flux ratio of Seyfert galaxies Type 1 and Type 2. However, there is a significant trend between the mid-IR flux and hard X-ray flux, confirming previous statistical results in the literature. Conclusions. We provide two catalog tables. The first is the revised version of the 3PBC catalog based on our multifrequency analyses. The second catalog table is a release of the second version of the Turin-SyCAT catalog. Finally, we highlight that extensive soft X-ray data are already available in the form of the Swift archive which can be used to search for potential counterparts of unidentified hard X-ray sources. All these datasets will be reduced and analyzed in a forthcoming analysis to determine the precise position of low-energy counterparts in the 0.5 10 keV energy range for 3PBC sources that can be targets of future optical spectroscopic campaigns; this is necessary to obtain their precise classification. © The Authors 2023.
Notas
Indexación: Scopus
Acknowledgements We thank the anonymous referee for useful comments that led to improvements in the paper. M.K. and N.W. are supported by the GACR grant 21–13491X. E.B. acknowledges NASA grant 80NSSC21K0653. M.K. was supported by the Italian Government Scholarship issued by the Italian MAECI. V.C. acknowledges support from CONACyT research grants 280789 (Mexico). F.M. wishes to thank Dr. G. Cusumano for introducing him to the Palermo BAT Catalog project. We would like to thank A. Capetti for his work done on the 1st version of the Turin-SyCAT, which was relevant for this work. This investigation is supported by the National Aeronautics and Space Administration (NASA) grants GO0-21110X, GO1-22087X, and GO1-22112A. This research has made use of the NASA/IPAC Infrared Science Archive, which is funded by the National Aeronautics and Space Administration and operated by the California Institute of Technology. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, Center for Astrophysics | Harvard & Smithsonian, the Chilean Participation Group, the French Participation Group, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut fur Astronomie (MPIA Heidelberg),Max-Planck-Institut fur Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society, and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen’s University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G was issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation Grant No. AST–1238877, the University of Maryland, Eotvos Lor and University (ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. TOPCAT and STILTS astronomical software (Taylor 2005) were used for the preparation and manipulation of the tabular data and the images.
Acknowledgements We thank the anonymous referee for useful comments that led to improvements in the paper. M.K. and N.W. are supported by the GACR grant 21–13491X. E.B. acknowledges NASA grant 80NSSC21K0653. M.K. was supported by the Italian Government Scholarship issued by the Italian MAECI. V.C. acknowledges support from CONACyT research grants 280789 (Mexico). F.M. wishes to thank Dr. G. Cusumano for introducing him to the Palermo BAT Catalog project. We would like to thank A. Capetti for his work done on the 1st version of the Turin-SyCAT, which was relevant for this work. This investigation is supported by the National Aeronautics and Space Administration (NASA) grants GO0-21110X, GO1-22087X, and GO1-22112A. This research has made use of the NASA/IPAC Infrared Science Archive, which is funded by the National Aeronautics and Space Administration and operated by the California Institute of Technology. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, Center for Astrophysics | Harvard & Smithsonian, the Chilean Participation Group, the French Participation Group, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut fur Astronomie (MPIA Heidelberg),Max-Planck-Institut fur Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society, and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen’s University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G was issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation Grant No. AST–1238877, the University of Maryland, Eotvos Lor and University (ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. TOPCAT and STILTS astronomical software (Taylor 2005) were used for the preparation and manipulation of the tabular data and the images.
Palabras clave
Catalogs, Methods: data analysis, X-rays: general
Citación
Astronomy and Astrophysics. Volume 670. 1 February 2023. Article number A171
DOI
10.1051/0004-6361/202243848