Examinando por Autor "Nevermann, Jan"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Identification of genes involved in biogenesis of Outer Membrane Vesicles (OMVs) in Salmonella enterica Serovar Typhi(Frontiers Media S.A., 2019-02) Nevermann, Jan; Silva, Andrés; Otero, Carolina; Oyarzún, Diego P.; Barrera, Boris; Gil, Fernando; Calderón, Iván L.; Fuentes, Juan A.Outer membrane vesicles (OMVs) are nano-sized proteoliposomes discharged from the cell envelope of Gram-negative bacteria. OMVs normally contain toxins, enzymes and other factors, and are used as vehicles in a process that has been considered a generalized, evolutionarily conserved delivery system among bacteria. Furthermore, OMVs can be used in biotechnological applications that require delivery of biomolecules, such as vaccines, remarking the importance of their study. Although it is known that Salmonella enterica serovar Typhi (S. Typhi), the etiological agent of typhoid fever in humans, delivers toxins (e.g., HlyE) via OMVs, there are no reports identifying genetic determinants of the OMV biogenesis in this serovar. In the present work, and with the aim to identify genes participating in OMV biogenesis in S. Typhi, we screened 15,000 random insertion mutants for increased HlyE secretion. We found 9 S. Typhi genes (generically called zzz genes) determining an increased HlyE secretion that were also involved in OMV biogenesis. The genes corresponded to ompA, nlpI, and tolR (envelope stability), rfaE and waaC (LPS synthesis), yipP (envC), mrcB (synthesis and remodeling of peptidoglycan), degS (stress sensor serine endopeptidase) and hns (global transcriptional regulator). We found that S. Typhi Δzzz mutants were prone to secrete periplasmic, functional proteins with a relatively good envelope integrity. In addition, we showed that zzz genes participate in OMV biogenesis, modulating different properties such as OMV size distribution, OMV yield and OMV protein cargo. Copyright © 2019 Nevermann, Silva, Otero, Oyarzún, Barrera, Gil, Calderón and Fuentes. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Ítem “One for All”: Functional Transfer of OMV-Mediated Polymyxin B Resistance From Salmonella enterica sv. Typhi ΔtolR and ΔdegS to Susceptible Bacteria(Frontiers Media S.A., 2021-05) Marchant, Pedro; Carreño, Alexander; Vivanco, Eduardo; Silva, Andrés; Nevermann, Jan; Otero, Carolina; Araya, Eyleen; Gil, Fernando; Calderón, Iván L.; Fuentes, Juan A.The appearance of multi-resistant strains has contributed to reintroducing polymyxin as the last-line therapy. Although polymyxin resistance is based on bacterial envelope changes, other resistance mechanisms are being reported. Outer membrane vesicles (OMVs) are nanosized proteoliposomes secreted from the outer membrane of Gram-negative bacteria. In some bacteria, OMVs have shown to provide resistance to diverse antimicrobial agents either by sequestering and/or expelling the harmful agent from the bacterial envelope. Nevertheless, the participation of OMVs in polymyxin resistance has not yet been explored in S. Typhi, and neither OMVs derived from hypervesiculating mutants. In this work, we explored whether OMVs produced by the hypervesiculating strains Salmonella Typhi ΔrfaE (LPS synthesis), ΔtolR (bacterial envelope) and ΔdegS (misfolded proteins and σE activation) exhibit protective properties against polymyxin B. We found that the OMVs extracted from S. Typhi ΔtolR and ΔdegS protect S. Typhi WT from polymyxin B in a concentration-depending manner. By contrast, the protective effect exerted by OMVs from S. Typhi WT and S. Typhi ΔrfaE is much lower. This effect is achieved by the sequestration of polymyxin B, as assessed by the more positive Zeta potential of OMVs with polymyxin B and the diminished antibiotic’s availability when coincubated with OMVs. We also found that S. Typhi ΔtolR exhibited an increased MIC of polymyxin B. Finally, we determined that S. Typhi ΔtolR and S. Typhi ΔdegS, at a lesser level, can functionally and transiently transfer the OMV-mediated polymyxin B resistance to susceptible bacteria in cocultures. This work shows that mutants in genes related to OMVs biogenesis can release vesicles with improved abilities to protect bacteria against membrane-active agents. Since mutations affecting OMV biogenesis can involve the bacterial envelope, mutants with increased resistance to membrane-acting agents that, in turn, produce protective OMVs with a high vesiculation rate (e.g., S. Typhi ΔtolR) can arise. Such mutants can functionally transfer the resistance to surrounding bacteria via OMVs, diminishing the effective concentration of the antimicrobial agent and potentially favoring the selection of spontaneous resistant strains in the environment. This phenomenon might be considered the source for the emergence of polymyxin resistance in an entire bacterial community. © Copyright © 2021 Marchant, Carreño, Vivanco, Silva, Nevermann, Otero, Araya, Gil, Calderón and Fuentes.Ítem Structural Characterization, DFT Calculation, NCI, Scan-Rate Analysis and Antifungal Activity against Botrytis cinerea of (E)-2-{[(2-Aminopyridin-2-yl)imino]-methyl}-4,6-di-tert-butylphenol (Pyridine Schiff Base)(MDPI, 2020-06) Carreño, Alexander; Paéz-Hernández, Dayán; Cantero-López, Plinio; Zúñiga, César; Nevermann, Jan; Ramírez-Osorio, Angélica; Gacituá, Manuel; Oyarzún, Poldie; Saéz-Cortez, Felipe; Polanco, Rubén; Otero, Carolina; Fuentes, Juan A.Botrytis cinerea is a ubiquitous necrotrophic filamentous fungal phytopathogen that lacks host specificity and can affect more than 1000 different plant species. In this work, we explored L1 [(E)-2-{[(2-aminopyridin-2-yl)imino]-methyl}-4,6-di-tert-butylphenol], a pyridine Schiff base harboring an intramolecular bond (IHB), regarding their antifungal activity against Botrytis cinerea. Moreover, we present a full characterization of the L1 by NMR and powder diffraction, as well as UV-vis, in the presence of previously untested different organic solvents. Complementary timedependent density functional theory (TD-DFT) calculations were performed, and the noncovalent interaction (NCI) index was determined. Moreover, we obtained a scan-rate study on cyclic voltammetry of L1. Finally, we tested the antifungal activity of L1 against two strains of Botrytis cinerea (B05.10, a standard laboratory strain; and A1, a wild type strains isolated from Chilean blueberries). We found that L1 acts as an efficient antifungal agent against Botrytis cinerea at 26 °C, even better than the commercial antifungal agent fenhexamid. Although the antifungal activity was also observed at 4 °C, the effect was less pronounced. These results show the high versatility of this kind of pyridine Schiff bases in biological applications. © 2020 MDPI AG. All rights reserved.Ítem β-lactam-induced OMV release promotes polymyxin tolerance in Salmonella enterica sv. Typhi(Frontiers Media SA, 2024-04) Marchant, Pedro; Vivanco, Erika; Silva, Andrés; Nevermann, Jan; Fuentes, Ignacio; Barrera, Boris; Otero, Carolina; Calderón, Iván L.; Gil, Fernando; Fuentes, Juan A.The rise of multidrug-resistant bacteria is a global concern, leading to a renewed reliance on older antibiotics like polymyxins as a last resort. Polymyxins, cationic cyclic peptides synthesized nonribosomally, feature a hydrophobic acyl tail and positively charged residues. Their antimicrobial mechanism involves initial interaction with Gram-negative bacterial outer-membrane components through polar and hydrophobic interactions. Outer membrane vesicles (OMVs), nano-sized proteoliposomes secreted from the outer membrane of Gram-negative bacteria, play a crucial role in tolerating harmful molecules, including cationic peptides such as polymyxins. Existing literature has documented environmental changes’ impact on modulating OMV properties in Salmonella Typhimurium. However, less information exists regarding OMV production and characteristics in Salmonella Typhi. A previous study in our laboratory showed that S. Typhi ΔmrcB, a mutant associated with penicillin-binding protein (PBP, a β-lactam antibiotic target), exhibited hypervesiculation. Consequently, this study investigated the potential impact of β-lactam antibiotics on promoting polymyxin tolerance via OMVs in S. Typhi. Our results demonstrated that sub-lethal doses of β-lactams increased bacterial survival against polymyxin B in S. Typhi. This phenomenon stems from β-lactam antibiotics inducing hypervesiculation of OMVs with higher affinity for polymyxin B, capturing and diminishing its biologically effective concentration. These findings suggest that β-lactam antibiotic use may inadvertently contribute to decreased polymyxin effectivity against S. Typhi or other Gram-negative bacteria, complicating the effective treatment of infections caused by these pathogens. This study emphasizes the importance of evaluating the influence of β-lactam antibiotics on the interaction between OMVs and other antimicrobial agents.